Home
Class 12
MATHS
Given z=(1+isqrt(3))^(100), then [R E(z)...

Given `z=(1+isqrt(3))^(100),` then `[R E(z)//I M(z)]` equals `2^(100)` b. `2^(50)` c. `1/(sqrt(3))` d. `sqrt(3)`

A

`2^(100)`

B

`2^(50)`

C

`(1)/(sqrt(3))`

D

`sqrt(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\frac{Re(z)}{Im(z)}\) where \(z = (1 + i\sqrt{3})^{100}\). ### Step 1: Convert \(1 + i\sqrt{3}\) to polar form The complex number \(1 + i\sqrt{3}\) can be expressed in polar form as follows: - The modulus \(r\) is given by: \[ r = |1 + i\sqrt{3}| = \sqrt{1^2 + (\sqrt{3})^2} = \sqrt{1 + 3} = \sqrt{4} = 2 \] - The argument \(\theta\) is given by: \[ \theta = \tan^{-1}\left(\frac{\sqrt{3}}{1}\right) = \tan^{-1}(\sqrt{3}) = \frac{\pi}{3} \] Thus, we can write: \[ 1 + i\sqrt{3} = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right) \] ### Step 2: Raise to the power of 100 Now we raise \(1 + i\sqrt{3}\) to the power of 100: \[ z = (1 + i\sqrt{3})^{100} = \left(2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)\right)^{100} \] Using De Moivre's theorem: \[ z = 2^{100}\left(\cos\left(100 \cdot \frac{\pi}{3}\right) + i\sin\left(100 \cdot \frac{\pi}{3}\right)\right) \] ### Step 3: Simplify the angle Now we simplify \(100 \cdot \frac{\pi}{3}\): \[ 100 \cdot \frac{\pi}{3} = \frac{100\pi}{3} \] To find the equivalent angle within \(0\) to \(2\pi\), we can subtract \(2\pi\) multiples: \[ \frac{100\pi}{3} - 2\pi \cdot 16 = \frac{100\pi}{3} - \frac{96\pi}{3} = \frac{4\pi}{3} \] Thus: \[ z = 2^{100}\left(\cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3}\right) \] ### Step 4: Calculate \(\cos\frac{4\pi}{3}\) and \(\sin\frac{4\pi}{3}\) From the unit circle: - \(\cos\frac{4\pi}{3} = -\frac{1}{2}\) - \(\sin\frac{4\pi}{3} = -\frac{\sqrt{3}}{2}\) ### Step 5: Substitute back into \(z\) Now substituting these values back into \(z\): \[ z = 2^{100}\left(-\frac{1}{2} + i\left(-\frac{\sqrt{3}}{2}\right)\right) = 2^{100}\left(-\frac{1}{2} - i\frac{\sqrt{3}}{2}\right) \] This simplifies to: \[ z = 2^{100} \cdot -\frac{1}{2} - i \cdot 2^{100} \cdot \frac{\sqrt{3}}{2} \] Thus: \[ z = -2^{99} - i\sqrt{3} \cdot 2^{99} \] ### Step 6: Identify the real and imaginary parts From the expression for \(z\): - \(Re(z) = -2^{99}\) - \(Im(z) = -\sqrt{3} \cdot 2^{99}\) ### Step 7: Calculate \(\frac{Re(z)}{Im(z)}\) Now we compute: \[ \frac{Re(z)}{Im(z)} = \frac{-2^{99}}{-\sqrt{3} \cdot 2^{99}} = \frac{2^{99}}{\sqrt{3} \cdot 2^{99}} = \frac{1}{\sqrt{3}} \] ### Final Answer Thus, the value of \(\frac{Re(z)}{Im(z)}\) is: \[ \frac{1}{\sqrt{3}} \]

To solve the problem, we need to find the value of \(\frac{Re(z)}{Im(z)}\) where \(z = (1 + i\sqrt{3})^{100}\). ### Step 1: Convert \(1 + i\sqrt{3}\) to polar form The complex number \(1 + i\sqrt{3}\) can be expressed in polar form as follows: - The modulus \(r\) is given by: \[ r = |1 + i\sqrt{3}| = \sqrt{1^2 + (\sqrt{3})^2} = \sqrt{1 + 3} = \sqrt{4} = 2 \] ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWERS TYPE|49 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise LINKED COMPREHENSION TYPE|36 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.11|6 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

Given z=(1+isqrt(3))^(100), then [Re(z)//Im(z)] equals (a) 2^(100) b. 2^(50) c. 1/(sqrt(3)) d. sqrt(3)

If z(2-2sqrt(3i))^2=i(sqrt(3)+i)^4, then a r g(z)=

If z=((sqrt(3)+i)^(17))/((1-i)^(50)) , then find a m p(z)dot

If 3^(49)(x+i y)=(3/2+(sqrt(3))/2i)^(100) and x=k y then k is: a. -1//3 b. sqrt(3) c. -sqrt(3) d. -1/(sqrt(3))

If z is a complex number such that |z|=4 and a r g(z)=(5pi)/6 , then z is equal to -2sqrt(3)+2i b. 2sqrt(3)+i c. 2sqrt(3)-2i d. -sqrt(3)+i

If z is a complex number such that |z|=4 and a r g(z)=(5pi)/6 , then z is equal to -2sqrt(3)+2i b. 2sqrt(3)+i c. 2sqrt(3)-2i d. -sqrt(3)+i

If arg ((z_(1) -(z)/(|z|))/((z)/(|z|))) = (pi)/(2) and |(z)/(|z|)-z_(1)|=3 , then |z_(1)| equals to a. sqrt(3) b. 2sqrt(2) c. sqrt(10) d. sqrt(26)

If z is a complex number having least absolute value and |z-2+2i|=1 ,then z= (2-1//sqrt(2))(1-i) b. (2-1//sqrt(2))(1+i) c. (2+1//sqrt(2))(1-i)"" d. (2+1//sqrt(2))(1+i)

The shortest distance between the lines (x-3)/3=(y-8)/(-1)=(z-3)/1a n d(x+3)/(-3)=(y+7)/2=(z-6)/4 is a. sqrt(30) b. 2sqrt(30) c. 5sqrt(30) d. 3sqrt(30)

The shortest distance between the lines (x-3)/3=(y-8)/(-1)=(z-3)/1a n d(x+3)/(-3)=(y+7)/2=(z-6)/4 is a. sqrt(30) b. 2sqrt(30) c. 5sqrt(30) d. 3sqrt(30)

CENGAGE ENGLISH-COMPLEX NUMBERS-single correct Answer type
  1. If z=(3+7i)(a+ib), where a, b in Z-{0}, is purely imaginery, then mini...

    Text Solution

    |

  2. about to only mathematics

    Text Solution

    |

  3. Given z=(1+isqrt(3))^(100), then [R E(z)//I M(z)] equals 2^(100) b. 2^...

    Text Solution

    |

  4. The expression [(1+sin(pi/8)+icos(pi/8))/(1+sin(pi/8)-icos(pi/8))]^8 i...

    Text Solution

    |

  5. The number of complex numbers z satisfying |z-3-i|=|z-9-i|a n d|z-3+3i...

    Text Solution

    |

  6. P(z) be a variable point in the Argand plane such that |z|=m in i mu m...

    Text Solution

    |

  7. If |z^2-1|=|z|^2+1, then z lies on (a) The Real axis (b)The imaginary...

    Text Solution

    |

  8. about to only mathematics

    Text Solution

    |

  9. about to only mathematics

    Text Solution

    |

  10. Number of ordered pairs (s), (a,b) of real numbers such that (a+ib)^(2...

    Text Solution

    |

  11. The equation az^(3) + bz^(2) + barbz + bara = 0 has a root alpha, wh...

    Text Solution

    |

  12. If k>0, |z|=|w|=k, and alpha=(z-bar w)/(k^2+zbar(w)), then Re(alpha) ...

    Text Solution

    |

  13. z1a n dz2 are two distinct points in an Argand plane. If a|z1|=b|z2|(w...

    Text Solution

    |

  14. If z is a comple number such that -(pi)/(2) lt "arg z" le (pi)/(2), ...

    Text Solution

    |

  15. If cos alpha + 2 cos beta +3 cos gamma = sin alpha + 2 sin beta + 3 s...

    Text Solution

    |

  16. If alpha,beta be the roots of the equation u^2-2u+2=0 and if cottheta...

    Text Solution

    |

  17. If z=(i)^(i)^(((i)))w h e r e i=sqrt(-1),t h e n|z| is equal to 1 b. e...

    Text Solution

    |

  18. lf z = ilog(2-sqrt(3)), then cos z =

    Text Solution

    |

  19. If |z|=1, then the point representing the complex number -1+3z will li...

    Text Solution

    |

  20. The locus of point z satisfying R e(1/z)=k , where k is a non zero re...

    Text Solution

    |