Home
Class 12
MATHS
lf z = ilog(2-sqrt(3)), then cos z =...

lf `z = ilog(2-sqrt(3))`, then `cos z =`

A

`-1`

B

`-1//2`

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( z = i \log(2 - \sqrt{3}) \) and we need to find \( \cos z \), we can follow these steps: ### Step-by-Step Solution: 1. **Identify the expression for \( z \)**: \[ z = i \log(2 - \sqrt{3}) \] 2. **Use Euler's formula**: Recall that Euler's formula states: \[ e^{iz} = \cos(z) + i\sin(z) \] From this, we can express \( \cos(z) \) as: \[ \cos(z) = \frac{e^{iz} + e^{-iz}}{2} \] 3. **Calculate \( e^{iz} \)**: Substitute \( z \) into the expression: \[ e^{iz} = e^{i(i \log(2 - \sqrt{3}))} = e^{-\log(2 - \sqrt{3})} \] Using the property of logarithms, we have: \[ e^{-\log(a)} = \frac{1}{a} \] Therefore: \[ e^{iz} = \frac{1}{2 - \sqrt{3}} \] 4. **Calculate \( e^{-iz} \)**: Similarly, we find \( e^{-iz} \): \[ e^{-iz} = e^{-\left(-i \log(2 - \sqrt{3})\right)} = e^{i \log(2 - \sqrt{3})} = 2 - \sqrt{3} \] 5. **Combine the results**: Now we can substitute \( e^{iz} \) and \( e^{-iz} \) back into the formula for \( \cos(z) \): \[ \cos(z) = \frac{e^{iz} + e^{-iz}}{2} = \frac{\frac{1}{2 - \sqrt{3}} + (2 - \sqrt{3})}{2} \] 6. **Simplify the expression**: To simplify \( \frac{1}{2 - \sqrt{3}} + (2 - \sqrt{3}) \), we first rationalize \( \frac{1}{2 - \sqrt{3}} \): \[ \frac{1}{2 - \sqrt{3}} \cdot \frac{2 + \sqrt{3}}{2 + \sqrt{3}} = \frac{2 + \sqrt{3}}{(2 - \sqrt{3})(2 + \sqrt{3})} = \frac{2 + \sqrt{3}}{4 - 3} = 2 + \sqrt{3} \] Thus: \[ \cos(z) = \frac{(2 + \sqrt{3}) + (2 - \sqrt{3})}{2} = \frac{4}{2} = 2 \] 7. **Final result**: Therefore, the value of \( \cos(z) \) is: \[ \cos(z) = 2 \]

To solve the problem where \( z = i \log(2 - \sqrt{3}) \) and we need to find \( \cos z \), we can follow these steps: ### Step-by-Step Solution: 1. **Identify the expression for \( z \)**: \[ z = i \log(2 - \sqrt{3}) \] ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWERS TYPE|49 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise LINKED COMPREHENSION TYPE|36 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.11|6 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

If z=i log(2-sqrt(3)) then cosz

If z=ilog_(e)(2-sqrt(3)),"where"i=sqrt(-1) then the cos z is equal to

If |z_(1)| = sqrt(2), |z_(2)| = sqrt(3) and |z_(1) + z_(2)| = sqrt((5-2sqrt(3))) then arg ((z_(1))/(z_(2))) (not neccessarily principal) is (a) (3pi)/(4) (b) (2pi)/(3) (c) (5pi)/(4) (d) (5pi)/(2)

If z = (-4 +2 sqrt3i)/(5 +sqrt3i) , then the value of arg(z) is

If z(2-2sqrt(3i))^2=i(sqrt(3)+i)^4, then a r g(z)=

The complex numbers z_1, z_2 and z_3 satisfying (z_1-z_3)/(z_2-z_3) =(1- i sqrt(3))/2 are the vertices of triangle which is (1) of area zero (2) right angled isosceles(3) equilateral (4) obtuse angled isosceles

If z = (sqrt(3+i))/2 (where i = sqrt(-1) ) then (z^101 + i^103)^105 is equal to

Given z=(1+isqrt(3))^(100), then [R E(z)//I M(z)] equals 2^(100) b. 2^(50) c. 1/(sqrt(3)) d. sqrt(3)

A(z_1),B(z_2),C(z_3) are the vertices of the triangle A B C (in anticlockwise). If /_A B C=pi//4 and A B=sqrt(2)(B C) , then prove that z_2=z_3+i(z_1-z_3)dot

lf z_1,z_2,z_3 are vertices of an equilateral triangle inscribed in the circle |z| = 2 and if z_1 = 1 + iotasqrt3 , then

CENGAGE ENGLISH-COMPLEX NUMBERS-single correct Answer type
  1. If alpha,beta be the roots of the equation u^2-2u+2=0 and if cottheta...

    Text Solution

    |

  2. If z=(i)^(i)^(((i)))w h e r e i=sqrt(-1),t h e n|z| is equal to 1 b. e...

    Text Solution

    |

  3. lf z = ilog(2-sqrt(3)), then cos z =

    Text Solution

    |

  4. If |z|=1, then the point representing the complex number -1+3z will li...

    Text Solution

    |

  5. The locus of point z satisfying R e(1/z)=k , where k is a non zero re...

    Text Solution

    |

  6. If z is complex number, then the locus of z satisfying the condition |...

    Text Solution

    |

  7. The greatest positive argument of complex number satisfying |z-4|=R e(...

    Text Solution

    |

  8. If ta n dc are two complex numbers such that |t|!=|c|,|t|=1a n dz=(a t...

    Text Solution

    |

  9. If z^2+z|z|+|z^2|=0, then the locus z is a. a circle b. a straight ...

    Text Solution

    |

  10. Let C1 and C2 are concentric circles of radius 1and 8/3 respectively ...

    Text Solution

    |

  11. about to only mathematics

    Text Solution

    |

  12. If |z-1|lt=2a n d|omegaz-1-omega^2|=a (where omega is a cu...

    Text Solution

    |

  13. If |z^2-3|=3|z| , then the maximum value of |z| is 1 b. (3+sqrt(21))/2...

    Text Solution

    |

  14. If |2z-1|=|z-2|a n dz1, z2, z3 are complex numbers such that |z1-alpha...

    Text Solution

    |

  15. If z1 is a root of the equation a0z^n+a1z^(n-1)++a(n-1)z+an=3,w h e r ...

    Text Solution

    |

  16. If |z| < sqrt(2)-1,t h e n|z^2+2zcosalpha|i s a. less than 1 b. sqr...

    Text Solution

    |

  17. Let |Z(r) - r| le r, for all r = 1,2,3….,n. Then |sum(r=1)^(n)z(r)| is...

    Text Solution

    |

  18. All the roots of the equation 1 lz^(10) + 10iz^(9) + 10iz -11=0 lie

    Text Solution

    |

  19. Let lambda in R . If the origin and the non-real roots of 2z^2+2z+lam...

    Text Solution

    |

  20. The roots of the equation t^3+3a t^2+3b t+c=0a r ez1, z2, z3 which rep...

    Text Solution

    |