Home
Class 12
MATHS
Let |Z(r) - r| le r, for all r = 1,2,3…....

Let `|Z_(r) - r| le r`, for all `r = 1,2,3….,n`. Then `|sum_(r=1)^(n)z_(r)|` is less than

A

n

B

2n

C

n(n+1)

D

`(n(n+1))/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given inequality and derive the required expression step by step. ### Step-by-Step Solution: 1. **Understanding the Given Inequality**: We are given that \( |Z_r - r| \leq r \) for \( r = 1, 2, 3, \ldots, n \). This means that the complex number \( Z_r \) is within a distance \( r \) from the real number \( r \). 2. **Rearranging the Inequality**: From the given inequality, we can express \( Z_r \) as: \[ |Z_r| \leq |Z_r - r| + |r| \leq r + r = 2r \] This means that the modulus of \( Z_r \) is less than or equal to \( 2r \). 3. **Summing Over r**: Now, we want to find the modulus of the sum: \[ \left| \sum_{r=1}^{n} Z_r \right| \] Using the triangle inequality, we have: \[ \left| \sum_{r=1}^{n} Z_r \right| \leq \sum_{r=1}^{n} |Z_r| \] 4. **Applying the Bound on |Z_r|**: From our previous step, we know \( |Z_r| \leq 2r \). Therefore: \[ \sum_{r=1}^{n} |Z_r| \leq \sum_{r=1}^{n} 2r = 2 \sum_{r=1}^{n} r \] 5. **Calculating the Sum**: The sum \( \sum_{r=1}^{n} r \) is given by the formula: \[ \sum_{r=1}^{n} r = \frac{n(n + 1)}{2} \] Thus: \[ \sum_{r=1}^{n} |Z_r| \leq 2 \cdot \frac{n(n + 1)}{2} = n(n + 1) \] 6. **Final Result**: Therefore, we conclude that: \[ \left| \sum_{r=1}^{n} Z_r \right| \leq n(n + 1) \] ### Conclusion: The final result is: \[ | \sum_{r=1}^{n} Z_r | < n(n + 1) \]

To solve the problem, we need to analyze the given inequality and derive the required expression step by step. ### Step-by-Step Solution: 1. **Understanding the Given Inequality**: We are given that \( |Z_r - r| \leq r \) for \( r = 1, 2, 3, \ldots, n \). This means that the complex number \( Z_r \) is within a distance \( r \) from the real number \( r \). 2. **Rearranging the Inequality**: ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWERS TYPE|49 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise LINKED COMPREHENSION TYPE|36 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.11|6 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

Let |Z_(r) - r| le r, Aar = 1,2,3….,n . Then |sum_(r=1)^(n)z_(r)| is less than

sum_(r=1)^n r(n-r) is equal to :

Let |z_r-r|lt=r ,AAr=1,2,3,... ,n Then |sum_(r=1)^n Z_r| is less than n b. 2n c. n(n+1) d. (n(n+1))/2

sum_(r=1)^n r (n-r +1) is equal to :

Find the sum sum_(r=1)^n r/(r+1)!

If I(r)=r(r^2-1) , then sum_(r=2)^n 1/(I(r)) is equal to

Evaluate: sum_(r=1)^n(3^r-2^r)

Sum of the series sum_(r=1)^(n) (r^(2)+1)r! is

The value of sum_(r=1)^(n)(""^(n)P_(r))/(r!) is

If sum_(r=1)^n I(r)=(3^n -1) , then sum_(r=1)^n 1/(I(r)) is equal to :

CENGAGE ENGLISH-COMPLEX NUMBERS-single correct Answer type
  1. If z1 is a root of the equation a0z^n+a1z^(n-1)++a(n-1)z+an=3,w h e r ...

    Text Solution

    |

  2. If |z| < sqrt(2)-1,t h e n|z^2+2zcosalpha|i s a. less than 1 b. sqr...

    Text Solution

    |

  3. Let |Z(r) - r| le r, for all r = 1,2,3….,n. Then |sum(r=1)^(n)z(r)| is...

    Text Solution

    |

  4. All the roots of the equation 1 lz^(10) + 10iz^(9) + 10iz -11=0 lie

    Text Solution

    |

  5. Let lambda in R . If the origin and the non-real roots of 2z^2+2z+lam...

    Text Solution

    |

  6. The roots of the equation t^3+3a t^2+3b t+c=0a r ez1, z2, z3 which rep...

    Text Solution

    |

  7. The roots of the cubic equation (z+ab)^3=a^3,a !=0 represents the ver...

    Text Solution

    |

  8. If |z1|+|z2|=1a n dz1+z2+z3=0 then the area of the triangle whose vert...

    Text Solution

    |

  9. Let za n domega be two complex numbers such that |z|lt=1,|omega|lt=1a ...

    Text Solution

    |

  10. Let z(1),z(2),z(3),z(4) are distinct complex numbers satisfying |z|...

    Text Solution

    |

  11. z1, z2, z3,z4 are distinct complex numbers representing the vertices o...

    Text Solution

    |

  12. If k + |k + z^2|=|z|^2(k in R^-), then possible argument of z is

    Text Solution

    |

  13. If z(1),z(2),z(3) are the vertices of an equilational triangle ABC s...

    Text Solution

    |

  14. If z is a complex number having least absolute value and |z-2+2i=1,t h...

    Text Solution

    |

  15. If z is a complex number lying in the fourth quadrant of Argand plane ...

    Text Solution

    |

  16. If |z2+i z1|=|z1|+|z2|a n d|z1|=3a n d|z2|=4, then the area of A B C ...

    Text Solution

    |

  17. If a complex number z satisfies |2z+10+10 i|lt=5sqrt(3)-5, then the le...

    Text Solution

    |

  18. about to only mathematics

    Text Solution

    |

  19. z1a n dz2 lie on a circle with center at the origin. The point of inte...

    Text Solution

    |

  20. If arg ((z(1) -(z)/(|z|))/((z)/(|z|))) = (pi)/(2) and |(z)/(|z|)-z(1)|...

    Text Solution

    |