Home
Class 12
MATHS
Let z(1) and z(2) be two non -zero com...

Let `z_(1)` and `z_(2)` be two non -zero complex number such that `|z_(1)+z_(2)| = |z_(1) | = |z_(2)|` . Then `(z_(1))/(z_(2))` can be equal to (`omega` is imaginary cube root of unity).

A

`1 + omega`

B

`1+ omega^(2)`

C

`omega`

D

`omega^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given conditions for the complex numbers \( z_1 \) and \( z_2 \): 1. **Given Condition**: \[ |z_1 + z_2| = |z_1| = |z_2| \] 2. **Let** \( |z_1| = |z_2| = r \). Thus, we can express \( z_1 \) and \( z_2 \) in polar form: \[ z_1 = r e^{i\theta_1}, \quad z_2 = r e^{i\theta_2} \] 3. **Using the condition** \( |z_1 + z_2| = |z_1| \): \[ |z_1 + z_2| = |r e^{i\theta_1} + r e^{i\theta_2}| = r |e^{i\theta_1} + e^{i\theta_2}| \] This implies: \[ |e^{i\theta_1} + e^{i\theta_2}| = 1 \] 4. **Using the cosine rule**: The magnitude \( |e^{i\theta_1} + e^{i\theta_2}| \) can be expressed as: \[ |e^{i\theta_1} + e^{i\theta_2}| = \sqrt{2 + 2\cos(\theta_2 - \theta_1)} = 1 \] Squaring both sides gives: \[ 2 + 2\cos(\theta_2 - \theta_1) = 1 \] Simplifying this results in: \[ 2\cos(\theta_2 - \theta_1) = -1 \quad \Rightarrow \quad \cos(\theta_2 - \theta_1) = -\frac{1}{2} \] 5. **Finding the angle**: The angle \( \theta_2 - \theta_1 \) that satisfies \( \cos(\theta_2 - \theta_1) = -\frac{1}{2} \) is: \[ \theta_2 - \theta_1 = \pm \frac{2\pi}{3} \quad \text{(120 degrees or -120 degrees)} \] 6. **Expressing the ratio**: The ratio \( \frac{z_1}{z_2} \) can be calculated: \[ \frac{z_1}{z_2} = \frac{r e^{i\theta_1}}{r e^{i\theta_2}} = e^{i(\theta_1 - \theta_2)} = e^{-i(\theta_2 - \theta_1)} \] Substituting \( \theta_2 - \theta_1 = \frac{2\pi}{3} \) or \( -\frac{2\pi}{3} \): \[ \frac{z_1}{z_2} = e^{-i\frac{2\pi}{3}} \quad \text{or} \quad e^{i\frac{2\pi}{3}} \] 7. **Identifying the roots of unity**: The values \( e^{-i\frac{2\pi}{3}} \) and \( e^{i\frac{2\pi}{3}} \) correspond to the cube roots of unity: \[ \omega = e^{i\frac{2\pi}{3}}, \quad \omega^2 = e^{-i\frac{2\pi}{3}} \] Thus, we conclude that: \[ \frac{z_1}{z_2} = \omega \quad \text{or} \quad \frac{z_1}{z_2} = \omega^2 \]

To solve the problem, we start with the given conditions for the complex numbers \( z_1 \) and \( z_2 \): 1. **Given Condition**: \[ |z_1 + z_2| = |z_1| = |z_2| \] 2. **Let** \( |z_1| = |z_2| = r \). Thus, we can express \( z_1 \) and \( z_2 \) in polar form: ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise LINKED COMPREHENSION TYPE|36 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise NUMERICAL VALUE TYPES|33 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise single correct Answer type|92 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

Let z_(1),z_(2) be two complex numbers such that |z_(1)+z_(2)|=|z_(1)|+|z_(2)| . Then,

Let z_(1) and z_(2) be any two non-zero complex numbers such that 3|z_(1)|=2|z_(2)|. "If "z=(3z_(1))/(2z_(2)) + (2z_(2))/(3z_(1)) , then

Let z_(1) and z_(2) be two given complex numbers such that z_(1)/z_(2) + z_(2)/z_(1)=1 and |z_(1)| =3 , " then " |z_(1)-z_(2)|^(2) is equal to

If z_(1) and z_(2) are two complex numbers such that |(z_(1)-z_(2))/(z_(1)+z_(2))|=1 , then

If z_(1) and z_(2) are to complex numbers such that two |z_(1)|=|z_(2)|+|z_(1)-z_(2)| , then arg (z_(1))-"arg"(z_(2))

If z_(1), z_(2) in C (set of complex numbers), prove that |z_(1) + z_(2)| le |z_(1)| + |z_(2)|

Let z_(1),z_(2) be two complex numbers such that z_(1)+z_(2) and z_(1)z_(2) both are real, then

Let Z_1 and Z_2 are two non-zero complex number such that |Z_1+Z_2|=|Z_1|=|Z_2| , then Z_1/Z_2 may be :

If z_(1) and z_(2) are two complex numbers such that |z_(1)|= |z_(2)| , then is it necessary that z_(1) = z_(2)

If z_(1) and z_(2) are two complex numbers such that |z_(1)| lt 1 lt |z_(2)| , then prove that |(1- z_(1)barz_(2))//(z_(1)-z_(2))| lt 1

CENGAGE ENGLISH-COMPLEX NUMBERS-MULTIPLE CORRECT ANSWERS TYPE
  1. Values (s)(-i)^(1//3) is/are (sqrt(3)-i)/2 b. (sqrt(3)+i)/2 c. (-sqrt...

    Text Solution

    |

  2. If a^3+b^3+6a b c=8c^3 & omega is a cube root of unity then: (a)a , b ...

    Text Solution

    |

  3. Let z(1) and z(2) be two non -zero complex number such that |z(1)+z...

    Text Solution

    |

  4. If p=a+bomega+comega^2, q=b+comega+aomega^2, and r=c+aomega+bomega^2,...

    Text Solution

    |

  5. Let P(x) and Q(x) be two polynomials.Suppose that f(x) = P(x^3) + x Q(...

    Text Solution

    |

  6. If alpha is a complex constant such that a z^2+z+ alpha=0 has a ral ro...

    Text Solution

    |

  7. If z^3+(3+2i)z+(-1+i a)=0 has one real roots, then the value of a lies...

    Text Solution

    |

  8. Given that the complex numbers which satisfy the equation | z bar z ^...

    Text Solution

    |

  9. If the points A(z),B(-z),a n dC(1-z) are the vertices of an equilatera...

    Text Solution

    |

  10. If a|z-3|=min{"|"z1,|z-5|},t h e nR e(z) equals to 2 b. 5/2 c. 7/2 d. ...

    Text Solution

    |

  11. If z(1),z(2) are tow complex numberes (z(1) ne z(2)) satisfying |z(1)...

    Text Solution

    |

  12. If z1=a + ib and z2 = c + id are complex numbers such that |z1|=|z2|=...

    Text Solution

    |

  13. Let z1a n dz2 be complex numbers such that z1!=z2 and |z1|=|z2|dot If ...

    Text Solution

    |

  14. If |z(1)| = sqrt(2), |z(2)| = sqrt(3) and |z(1) + z(2)| = sqrt((5-2sqr...

    Text Solution

    |

  15. Let four points z(1),z(2),z(3),z(4) be in complex plane such that |z...

    Text Solution

    |

  16. A rectangle of maximum area is inscribed in the circle |z-3-4i|=1. If ...

    Text Solution

    |

  17. If |z1|=15 and |z2-3-4i|=5,t h e n

    Text Solution

    |

  18. If P(z(1)),Q(z(2)),R(z(3)) " and " S(z(4)) are four complex numbers re...

    Text Solution

    |

  19. about to only mathematics

    Text Solution

    |

  20. If a complex number z satisfies |z| = 1 and arg(z-1) = (2pi)/(3), then...

    Text Solution

    |