Home
Class 12
MATHS
If p=a+bomega+comega^2, q=b+comega+aomeg...

If `p=a+bomega+comega^2`, `q=b+comega+aomega^2`, and `r=c+aomega+bomega^2`, where `a ,b ,c!=0` and `omega` is the complex cube root of unity, then (a) `p+q+r=a+b+c` (b) `p^2+z^2+r^2=a^2+b^2+c^2` (c) `p^2+z^2+r^2=-2(p q+q r+r p)` (d) none of these

A

If p,q,r lie on the circle |z|=2, the trinagle formed by these point is equilateral.

B

`p^(2)+q^(2)+r^(2) =a^(2)+b^(2)+c^(2)`

C

`p^(2)+q^(2) + r^(2) = 2 (pq+qr + rp)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A, C

`p+q+r=a + bomega + comega^(2) + b + aomega^(2)+ c + aomega + bomega^(2)`
`therefore p +q+ r = (a+b+c)(1+ omega + omega^(2))=0`
p,q,r lie on the circle `|z|=2`, whose circumcenter is origin. Also `(p+q+ r)//3=0` . Hence the cenroid with cicumcenter. So, the triangle is equilateral.
Now ,`(P +q+ r)^(2)= 0`
`rArr p^(2) +q^(2) + r^(2) = -2pqr[(1)/(p)+(1)/(q) +(1)/(r)]`
`=-2pqr[(1)/(a+bomega+comega^(2))+(1)/(omega(bomega^(2)+c+aomega^(2)))+(1)/(c+aomega +bomega^(2))]`
`=2pqr[(1)/(omega^(2)(aomega +bomega^(2)+c))+(1)/(omega(bomega^(2) + c+ aomega))+(1)/(c+aomega+bomega^(2))]`
`(-2pqr)/(aomega+ bomega^(2)+c)[(1)/(omega^(2))+(1)/(omega)+ (1)/(1)]= 0" "(2)`
Hence `p^(2)+q^(2) + r^(2) = 2` (pq + qr + rp)`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise LINKED COMPREHENSION TYPE|36 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise NUMERICAL VALUE TYPES|33 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise single correct Answer type|92 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

If x=a+b, y=aomega+bomega^2 and z=aomega^2+bomega where omega is an imaginary cube root of unity, prove that x^2+y^2+z^2=6ab .

The value of (a+bomega+comega^2)/(b+comega+aomega^2)+(a+bomega+comega^2)/(c+aomega+bomega^2) (where 'omega' is the imaginary cube root of unity), is (a) -omega (b). omega^2 (c). 1 (d). -1

If the difference of the roots of x^2-p x+q=0 is unity, then a) p^2+4q=1 b) p^2-4q=1 c) p^2+4q^2=(1+2q)^2 d) 4p^2+q^2=(1+2p)^2

If zeros of the polynomial f(x)=x^3-3p x^2+q x-r are in A.P., then (a) 2p^3=p q-r (b) 2p^3=p q+r (c) p^3=p q-r (d) None of these

If the ratio of the roots of a x ^2+2b x+c=0 is same as the ratios of roots of p x^2+2q x+r=0, then a. (2b)/(a c)=(q^2)/(p r) b. b/(a c)=(q^)/(p r) c. (b^2)/(a c)=(q^2)/(p r) d. none of these

If a^3+b^3+6a b c=8c^3 & omega is a cube root of unity then: (a) a , b , c are in A.P. (b) a , b , c , are in H.P. (c) a+bomega-2comega^2=0 (d) a+bomega^2-2comega=0

If p+q+r=0=a+b+c , then the value of the determinant |[p a, q b, r c],[ q c ,r a, p b],[ r b, p c, q a]|i s (a) 0 (b) p a+q b+r c (c) 1 (d) none of these

If omega be an imaginary cube root of unity, show that (a+bomega+comega^2)/(aomega+bomega^2+c) = omega^2

If p, q, r are any real numbers, then (A) max (p, q) lt max (p, q, r) (B) min(p,q) =1/2 (p+q-|p-q|) (C) max (p, q) < min(p, q, r) (D) None of these

if p: q :: r , prove that p : r = p^(2): q^(2) .

CENGAGE ENGLISH-COMPLEX NUMBERS-MULTIPLE CORRECT ANSWERS TYPE
  1. If a^3+b^3+6a b c=8c^3 & omega is a cube root of unity then: (a)a , b ...

    Text Solution

    |

  2. Let z(1) and z(2) be two non -zero complex number such that |z(1)+z...

    Text Solution

    |

  3. If p=a+bomega+comega^2, q=b+comega+aomega^2, and r=c+aomega+bomega^2,...

    Text Solution

    |

  4. Let P(x) and Q(x) be two polynomials.Suppose that f(x) = P(x^3) + x Q(...

    Text Solution

    |

  5. If alpha is a complex constant such that a z^2+z+ alpha=0 has a ral ro...

    Text Solution

    |

  6. If z^3+(3+2i)z+(-1+i a)=0 has one real roots, then the value of a lies...

    Text Solution

    |

  7. Given that the complex numbers which satisfy the equation | z bar z ^...

    Text Solution

    |

  8. If the points A(z),B(-z),a n dC(1-z) are the vertices of an equilatera...

    Text Solution

    |

  9. If a|z-3|=min{"|"z1,|z-5|},t h e nR e(z) equals to 2 b. 5/2 c. 7/2 d. ...

    Text Solution

    |

  10. If z(1),z(2) are tow complex numberes (z(1) ne z(2)) satisfying |z(1)...

    Text Solution

    |

  11. If z1=a + ib and z2 = c + id are complex numbers such that |z1|=|z2|=...

    Text Solution

    |

  12. Let z1a n dz2 be complex numbers such that z1!=z2 and |z1|=|z2|dot If ...

    Text Solution

    |

  13. If |z(1)| = sqrt(2), |z(2)| = sqrt(3) and |z(1) + z(2)| = sqrt((5-2sqr...

    Text Solution

    |

  14. Let four points z(1),z(2),z(3),z(4) be in complex plane such that |z...

    Text Solution

    |

  15. A rectangle of maximum area is inscribed in the circle |z-3-4i|=1. If ...

    Text Solution

    |

  16. If |z1|=15 and |z2-3-4i|=5,t h e n

    Text Solution

    |

  17. If P(z(1)),Q(z(2)),R(z(3)) " and " S(z(4)) are four complex numbers re...

    Text Solution

    |

  18. about to only mathematics

    Text Solution

    |

  19. If a complex number z satisfies |z| = 1 and arg(z-1) = (2pi)/(3), then...

    Text Solution

    |

  20. If |z-1|=1, then

    Text Solution

    |