Home
Class 12
MATHS
If |z(1)| = sqrt(2), |z(2)| = sqrt(3) an...

If `|z_(1)| = sqrt(2), |z_(2)| = sqrt(3) and |z_(1) + z_(2)| = sqrt((5-2sqrt(3)))` then arg `((z_(1))/(z_(2)))` (not neccessarily principal) is (a) `(3pi)/(4)` (b) `(2pi)/(3)` (c) `(5pi)/(4)` (d) `(5pi)/(2)`

A

`(3pi)/(4)`

B

`(2pi)/(3)`

C

`(5pi)/(4)`

D

`(5)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the argument of the complex number \(\frac{z_1}{z_2}\) given the magnitudes of \(z_1\) and \(z_2\) and the magnitude of their sum. ### Step-by-Step Solution: 1. **Given Information**: - \(|z_1| = \sqrt{2}\) - \(|z_2| = \sqrt{3}\) - \(|z_1 + z_2| = \sqrt{5 - 2\sqrt{3}}\) 2. **Using the Modulus Formula**: We know that: \[ |z_1 + z_2|^2 = |z_1|^2 + |z_2|^2 + z_1 \overline{z_2} + \overline{z_1} z_2 \] Substituting the known values: \[ |z_1 + z_2|^2 = (5 - 2\sqrt{3}) \] \[ |z_1|^2 = (\sqrt{2})^2 = 2 \] \[ |z_2|^2 = (\sqrt{3})^2 = 3 \] Therefore: \[ |z_1 + z_2|^2 = 2 + 3 + z_1 \overline{z_2} + \overline{z_1} z_2 \] This simplifies to: \[ 5 - 2\sqrt{3} = 5 + z_1 \overline{z_2} + \overline{z_1} z_2 \] 3. **Rearranging the Equation**: \[ z_1 \overline{z_2} + \overline{z_1} z_2 = -2\sqrt{3} \] 4. **Expressing in Terms of Arguments**: Let \(\theta_1 = \arg(z_1)\) and \(\theta_2 = \arg(z_2)\). Then: \[ z_1 \overline{z_2} = |z_1||z_2| e^{i(\theta_1 - \theta_2)} = \sqrt{2} \cdot \sqrt{3} e^{i(\theta_1 - \theta_2)} = \sqrt{6} e^{i(\theta_1 - \theta_2)} \] \[ \overline{z_1} z_2 = |z_1||z_2| e^{-i(\theta_1 - \theta_2)} = \sqrt{6} e^{-i(\theta_1 - \theta_2)} \] Therefore: \[ z_1 \overline{z_2} + \overline{z_1} z_2 = \sqrt{6} \left( e^{i(\theta_1 - \theta_2)} + e^{-i(\theta_1 - \theta_2)} \right) = 2\sqrt{6} \cos(\theta_1 - \theta_2) \] 5. **Setting Up the Equation**: Now we have: \[ 2\sqrt{6} \cos(\theta_1 - \theta_2) = -2\sqrt{3} \] Dividing both sides by \(2\sqrt{6}\): \[ \cos(\theta_1 - \theta_2) = \frac{-\sqrt{3}}{3} \] 6. **Finding the Angles**: The value \(\cos(\theta_1 - \theta_2) = -\frac{1}{2}\) corresponds to angles in the second and third quadrants: \[ \theta_1 - \theta_2 = \frac{5\pi}{6} \quad \text{or} \quad \theta_1 - \theta_2 = \frac{7\pi}{6} \] 7. **Finding the Argument of \(\frac{z_1}{z_2}\)**: Since \(\arg\left(\frac{z_1}{z_2}\right) = \theta_1 - \theta_2\), we have: \[ \arg\left(\frac{z_1}{z_2}\right) = \frac{5\pi}{6} \quad \text{or} \quad \frac{7\pi}{6} \] ### Conclusion: The possible values for \(\arg\left(\frac{z_1}{z_2}\right)\) are \(\frac{5\pi}{6}\) and \(\frac{7\pi}{6}\). However, since the options provided are: - (a) \(\frac{3\pi}{4}\) - (b) \(\frac{2\pi}{3}\) - (c) \(\frac{5\pi}{4}\) - (d) \(\frac{5\pi}{2}\) The correct answer that matches our calculations is: - (c) \(\frac{5\pi}{4}\)

To solve the problem, we need to find the argument of the complex number \(\frac{z_1}{z_2}\) given the magnitudes of \(z_1\) and \(z_2\) and the magnitude of their sum. ### Step-by-Step Solution: 1. **Given Information**: - \(|z_1| = \sqrt{2}\) - \(|z_2| = \sqrt{3}\) - \(|z_1 + z_2| = \sqrt{5 - 2\sqrt{3}}\) ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise LINKED COMPREHENSION TYPE|36 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise NUMERICAL VALUE TYPES|33 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise single correct Answer type|92 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

If z_(1) = 2+ 3i and z_(2) = 5-3i " then " z_(1)z_(2) is

If |z_(1)|=|z_(2)| and arg (z_(1)//z_(2))=pi, then find the of z_(1)z_(2).

If |z_(1)|=2,|z_(2)|=3,|z_(3)|=4and|z_(1)+z_(2)+z_(3)|=5. "then"|4z_(2)z_(3)+9z_(3)z_(1)+16z_(1)z_(2)| is

If |z_(1)+z_(2)|^(2) = |z_(1)|^(2) +|z_(2)|^(2) " the " 6/pi amp (z_(1)/z_(2)) is equal to ……

If |z_(1)|=|z_(2)|=|z_(3)|=1 and z_(1)+z_(2)+z_(3)=sqrt(2)+i , then the complex number z_(2)barz_(3)+z_(3)barz_(1)+z_(1)barz_(2) , is

If |z-4/2z|=2 then the least of |z| is (A) sqrt(5)-1 (B) sqrt(5)-2 (C) sqrt(5) (D) 2

If complex numbers z_(1)z_(2) and z_(3) are such that |z_(1)| = |z_(2)| = |z_(3)| , then prove that arg((z_(2))/(z_(1))) = arg ((z_(2) - z_(3))/(z_(1) - z_(3)))^(2) .

If z = (-4 +2 sqrt3i)/(5 +sqrt3i) , then the value of arg(z) is

Let Z_0 is the root of equation x^2+x+1=0 and Z=3+6i(Z_0)^(81)-3i(Z_0)^(93) Then arg (Z) is equal to (a) (pi)/(4) (b) (pi)/(3) (c) pi (d) (pi)/(6)

If z=sqrt(3)-2+i , then principal value of argument z is (where i=sqrt(-1) (1) -(5pi)/(12) (2) pi/(12) (3) (7pi)/(12) (4) (5pi)/(12)

CENGAGE ENGLISH-COMPLEX NUMBERS-MULTIPLE CORRECT ANSWERS TYPE
  1. If z1=a + ib and z2 = c + id are complex numbers such that |z1|=|z2|=...

    Text Solution

    |

  2. Let z1a n dz2 be complex numbers such that z1!=z2 and |z1|=|z2|dot If ...

    Text Solution

    |

  3. If |z(1)| = sqrt(2), |z(2)| = sqrt(3) and |z(1) + z(2)| = sqrt((5-2sqr...

    Text Solution

    |

  4. Let four points z(1),z(2),z(3),z(4) be in complex plane such that |z...

    Text Solution

    |

  5. A rectangle of maximum area is inscribed in the circle |z-3-4i|=1. If ...

    Text Solution

    |

  6. If |z1|=15 and |z2-3-4i|=5,t h e n

    Text Solution

    |

  7. If P(z(1)),Q(z(2)),R(z(3)) " and " S(z(4)) are four complex numbers re...

    Text Solution

    |

  8. about to only mathematics

    Text Solution

    |

  9. If a complex number z satisfies |z| = 1 and arg(z-1) = (2pi)/(3), then...

    Text Solution

    |

  10. If |z-1|=1, then

    Text Solution

    |

  11. If z(1) = 5 + 12i and |z(2)| = 4, then

    Text Solution

    |

  12. Let z(1),z(2),z(3) be the three nonzero comple numbers such that z(1)...

    Text Solution

    |

  13. z(1) " and " z(2) are the roots of the equation z^(2)-az+b=0, " where ...

    Text Solution

    |

  14. If |(z-z(1))//(z-z(2))| = 3, where z(1) and z(2) are fixed complex ...

    Text Solution

    |

  15. If z=x+i y , then the equation |(2z-i)/(z+1)|=m does not represents a ...

    Text Solution

    |

  16. System of equaitons |z+3|-|z-3| = 6 and |z-4|=r where r in R^(+) has

    Text Solution

    |

  17. Let the equation of a ray be |z-2|-|z-1-i| = sqrt(2). If it strikes t...

    Text Solution

    |

  18. Given that the two curves a r g(z)=pi/6 and |z-2sqrt(3)i|=r intersect ...

    Text Solution

    |

  19. On the Argand plane ,let z(1) = - 2+ 3z,z(2)= - 2-3z and |z| = 1. T...

    Text Solution

    |

  20. Let S = { z: x = x+ iy, y ge 0,|z-z(0)| le 1}, where |z(0)|= |z(0) - o...

    Text Solution

    |