Home
Class 12
MATHS
If |z+2-i|=5 and maxium value of |3z +9-...

If `|z+2-i|=5` and maxium value of `|3z +9-7i|` is M, then the value of M is ______.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the maximum value of \( |3z + 9 - 7i| \) given the condition \( |z + 2 - i| = 5 \). ### Step-by-Step Solution: 1. **Understanding the Given Condition**: We have the equation \( |z + 2 - i| = 5 \). This represents a circle in the complex plane centered at \( -2 + i \) with a radius of 5. 2. **Expressing the Complex Number**: We can express \( z \) in terms of its real and imaginary parts: \[ z = x + yi \] where \( x \) and \( y \) are real numbers. 3. **Rewriting the Condition**: The condition \( |z + 2 - i| = 5 \) can be rewritten as: \[ |(x + 2) + (y - 1)i| = 5 \] This implies: \[ \sqrt{(x + 2)^2 + (y - 1)^2} = 5 \] Squaring both sides gives: \[ (x + 2)^2 + (y - 1)^2 = 25 \] 4. **Finding the Maximum Value**: We need to find the maximum value of \( |3z + 9 - 7i| \): \[ |3z + 9 - 7i| = |3(x + yi) + 9 - 7i| = |(3x + 9) + (3y - 7)i| \] This can be expressed as: \[ |(3x + 9) + (3y - 7)i| = \sqrt{(3x + 9)^2 + (3y - 7)^2} \] 5. **Using the Triangle Inequality**: We can apply the triangle inequality: \[ |3z + 9 - 7i| \leq |3(z + 2 - i)| + |9 - 7i| \] Here, we know \( |z + 2 - i| = 5 \), so: \[ |3(z + 2 - i)| = 3 \cdot 5 = 15 \] Now, we calculate \( |9 - 7i| \): \[ |9 - 7i| = \sqrt{9^2 + (-7)^2} = \sqrt{81 + 49} = \sqrt{130} \] 6. **Combining the Results**: Therefore, we have: \[ |3z + 9 - 7i| \leq 15 + \sqrt{130} \] 7. **Finding the Maximum Value**: We need to find the maximum value of \( |3z + 9 - 7i| \). The maximum occurs when both components are maximized. Thus: \[ M = 15 + \sqrt{130} \] 8. **Final Calculation**: Since we need to find the numerical value of \( M \): \[ \sqrt{130} \approx 11.4 \quad \text{(approximately)} \] Therefore: \[ M \approx 15 + 11.4 = 26.4 \] ### Conclusion: The maximum value \( M \) is approximately \( 26.4 \).

To solve the problem, we need to find the maximum value of \( |3z + 9 - 7i| \) given the condition \( |z + 2 - i| = 5 \). ### Step-by-Step Solution: 1. **Understanding the Given Condition**: We have the equation \( |z + 2 - i| = 5 \). This represents a circle in the complex plane centered at \( -2 + i \) with a radius of 5. 2. **Expressing the Complex Number**: ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise ARCHIVES (SINGLE CORRECT ANSWER TYPE )|11 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise LINKED COMPREHENSION TYPE|36 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

If |z +2 - i |=5 then the maximum value of |3z+9-7i| is K, then find k

If |z +1| = z + 2(1 - i) , then the value of z

Least value of |z-2|+|z-4i| is

Let z be a complex number. If the minimum value of |z|^2+|z-3|^2+|z-3i|^2 is lambda , then the value of 6lambda is (1) 23 (2) 42 (3) 72 (4) 84

If z = 3 -2i then the value s of (Rez) (Im z)^(2) is

if |z-2i| le sqrt2 , then the maximum value of |3+i(z-1)| is :

If z satisfies the condition arg (z + i) = (pi)/(4) . Then the minimum value of |z + 1 - i| + |z - 2 + 3 i| is _______.

If |z-i| ≤ 2 and z_0 = 5+3i , the maximum value of |i z + z_0| is

If (m-5, n + 3) = (7, 9), find the values of m and n.

If | (z - i)/(z + 2i)| = 1, |z| = 5/2 then the value of |z + 3i|

CENGAGE ENGLISH-COMPLEX NUMBERS-NUMERICAL VALUE TYPES
  1. If omega is the imaginary cube roots of unity, then the number of p...

    Text Solution

    |

  2. Suppose that z is a complex number the satisfies |z-2-2i|lt=1. The max...

    Text Solution

    |

  3. If |z+2-i|=5 and maxium value of |3z +9-7i| is M, then the value of M ...

    Text Solution

    |

  4. Let Z1 = (8 + i)sin theta + (7 + 4i)cos theta and Z2 = (1 + 8i)sin th...

    Text Solution

    |

  5. Let A={a in R} the equation (1+2i)x^3-2(3+i)x^2+(5-4i)x+a^2=0 has at ...

    Text Solution

    |

  6. Find the minimum value of the expression E= |z|^2+ |z-3|^2 + |z- 6i|^2...

    Text Solution

    |

  7. If z1 lies on |z-3| + |z + 3| = 8 such that arg z1 = pi//6 , ...

    Text Solution

    |

  8. If z satisfies the condition arg(z + i) = (pi)/(4) . Then the ...

    Text Solution

    |

  9. Let omega ne 1 be a complex cube root of unity. If ( 4 + ...

    Text Solution

    |

  10. Let z be a non - real complex number which satisfies the equatio...

    Text Solution

    |

  11. If z, z 1 and z2 are complex numbers such that z = z 1 z2 ...

    Text Solution

    |

  12. Let z1 , z 2 and z3 be three complex numbers such that z1 + z2+ ...

    Text Solution

    |

  13. Let alpha be the non-real 5 th root of unity. If z1 and z2...

    Text Solution

    |

  14. Let z1, z2 , z3 in C such that |z1 | = |z2| = |z3| = |z1+ z...

    Text Solution

    |

  15. Let A (z1 ) and B(z2 ) be lying on the curve |z-3 - 4i| = 5, w...

    Text Solution

    |

  16. If z1,z2,z3 are three points lying on the circle |z|=2 then the minimu...

    Text Solution

    |

  17. Minimum value of |z1 + 1 | + |z2 + 1 | + |z 1 z 2 + 1 | i...

    Text Solution

    |

  18. If |z 1 |= 2 and (1 - i)z2 + (1+i)barz2 = 8sqrt2, then the mi...

    Text Solution

    |

  19. Given that 1 + 2|z|^(2) = |z^(2) + 1|^(2) + 2 | z + 1 | ^(2), t...

    Text Solution

    |

  20. about to only mathematics

    Text Solution

    |