Home
Class 12
MATHS
Find the minimum value of the expression...

Find the minimum value of the expression `E= |z|^2+ |z-3|^2 + |z- 6i|^2` (where `z=x+iy, x,y in R`)

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the expression \( E = |z|^2 + |z - 3|^2 + |z - 6i|^2 \), where \( z = x + iy \) (with \( x, y \in \mathbb{R} \)), we will follow these steps: ### Step 1: Substitute \( z \) We start by substituting \( z = x + iy \) into the expression. Thus, we have: \[ |z|^2 = |x + iy|^2 = x^2 + y^2 \] ### Step 2: Calculate \( |z - 3|^2 \) Next, we calculate \( |z - 3|^2 \): \[ |z - 3|^2 = |(x - 3) + iy|^2 = (x - 3)^2 + y^2 \] ### Step 3: Calculate \( |z - 6i|^2 \) Now, we calculate \( |z - 6i|^2 \): \[ |z - 6i|^2 = |x + (y - 6)i|^2 = x^2 + (y - 6)^2 \] ### Step 4: Combine the expressions Now we can combine all the expressions we have calculated for \( E \): \[ E = |z|^2 + |z - 3|^2 + |z - 6i|^2 \] Substituting the values we found: \[ E = (x^2 + y^2) + ((x - 3)^2 + y^2) + (x^2 + (y - 6)^2) \] ### Step 5: Expand the expression Now, we expand the expression: \[ E = x^2 + y^2 + (x^2 - 6x + 9 + y^2) + (x^2 + y^2 - 12y + 36) \] Combining like terms: \[ E = 3x^2 + 3y^2 - 6x - 12y + 45 \] ### Step 6: Rearrange the expression We can rearrange the expression to make it easier to find the minimum: \[ E = 3(x^2 - 2x) + 3(y^2 - 4y) + 45 \] ### Step 7: Complete the square Now we complete the square for both \( x \) and \( y \): \[ E = 3((x - 1)^2 - 1) + 3((y - 2)^2 - 4) + 45 \] This simplifies to: \[ E = 3(x - 1)^2 + 3(y - 2)^2 + 45 - 3 - 12 \] \[ E = 3(x - 1)^2 + 3(y - 2)^2 + 30 \] ### Step 8: Find the minimum value The minimum value of \( E \) occurs when both squares are zero, i.e., when \( x - 1 = 0 \) and \( y - 2 = 0 \). Thus: \[ x = 1, \quad y = 2 \] Substituting these values back into the expression for \( E \): \[ E_{\text{min}} = 3(0) + 3(0) + 30 = 30 \] ### Final Answer The minimum value of the expression \( E \) is \( \boxed{30} \). ---

To find the minimum value of the expression \( E = |z|^2 + |z - 3|^2 + |z - 6i|^2 \), where \( z = x + iy \) (with \( x, y \in \mathbb{R} \)), we will follow these steps: ### Step 1: Substitute \( z \) We start by substituting \( z = x + iy \) into the expression. Thus, we have: \[ |z|^2 = |x + iy|^2 = x^2 + y^2 \] ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise ARCHIVES (SINGLE CORRECT ANSWER TYPE )|11 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise LINKED COMPREHENSION TYPE|36 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

Find the minimum value of |z-1 if ||z-3|-|z+1||=2.

Find the minimum value of |z-1| if ||z-3|-|z+1||=2.

6.The minimum value of |z-1|+|z-2|+|z-3|+|z-4|+|z-5| is

If xyz = 1 and x, y, z gt 0 then the minimum value of the expression (x+2y)(y+2z)(z+2x) is

Factorize of the expression: a^3x+a^2(x-y)-a(y+z)-z\

If z=x+iy (x, y in R, x !=-1/2) , the number of values of z satisfying |z|^n=z^2|z|^(n-2)+z |z|^(n-2)+1. (n in N, n>1) is

If x+y+z=1 , then the minimum value of xy(x+y)^(2)+yz(y+z)^(2)+zx(z+x)^(2) is , where x,y,z inR^(+)

If x=1,\ y=-2\ a n d\ z=3, find the values of each of the following algebraic expressions: (i) x^3+y^3+z^3-3x y z (ii) 3x y^4-15 x^2y+4z

Find the angle between the planes 2x - y + 3z = 6 and x + y +2z =7 .

Find the angle between the planes 2x - y + 3z = 6 and x + y +2z =7 .

CENGAGE ENGLISH-COMPLEX NUMBERS-NUMERICAL VALUE TYPES
  1. If |z+2-i|=5 and maxium value of |3z +9-7i| is M, then the value of M ...

    Text Solution

    |

  2. Let Z1 = (8 + i)sin theta + (7 + 4i)cos theta and Z2 = (1 + 8i)sin th...

    Text Solution

    |

  3. Let A={a in R} the equation (1+2i)x^3-2(3+i)x^2+(5-4i)x+a^2=0 has at ...

    Text Solution

    |

  4. Find the minimum value of the expression E= |z|^2+ |z-3|^2 + |z- 6i|^2...

    Text Solution

    |

  5. If z1 lies on |z-3| + |z + 3| = 8 such that arg z1 = pi//6 , ...

    Text Solution

    |

  6. If z satisfies the condition arg(z + i) = (pi)/(4) . Then the ...

    Text Solution

    |

  7. Let omega ne 1 be a complex cube root of unity. If ( 4 + ...

    Text Solution

    |

  8. Let z be a non - real complex number which satisfies the equatio...

    Text Solution

    |

  9. If z, z 1 and z2 are complex numbers such that z = z 1 z2 ...

    Text Solution

    |

  10. Let z1 , z 2 and z3 be three complex numbers such that z1 + z2+ ...

    Text Solution

    |

  11. Let alpha be the non-real 5 th root of unity. If z1 and z2...

    Text Solution

    |

  12. Let z1, z2 , z3 in C such that |z1 | = |z2| = |z3| = |z1+ z...

    Text Solution

    |

  13. Let A (z1 ) and B(z2 ) be lying on the curve |z-3 - 4i| = 5, w...

    Text Solution

    |

  14. If z1,z2,z3 are three points lying on the circle |z|=2 then the minimu...

    Text Solution

    |

  15. Minimum value of |z1 + 1 | + |z2 + 1 | + |z 1 z 2 + 1 | i...

    Text Solution

    |

  16. If |z 1 |= 2 and (1 - i)z2 + (1+i)barz2 = 8sqrt2, then the mi...

    Text Solution

    |

  17. Given that 1 + 2|z|^(2) = |z^(2) + 1|^(2) + 2 | z + 1 | ^(2), t...

    Text Solution

    |

  18. about to only mathematics

    Text Solution

    |

  19. about to only mathematics

    Text Solution

    |

  20. For any integer k , let alphak=cos(kpi)/7+isin(kpi)/7,w h e r e i=sqrt...

    Text Solution

    |