Home
Class 12
MATHS
If z satisfies the condition arg(z...

If ` z ` satisfies the condition arg`(z + i) = (pi)/(4)` . Then the minimum value of ` |z + 1 - i| + |z - 2 + 3 i|` is _______.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the minimum value of \( |z + 1 - i| + |z - 2 + 3i| \) given that \( \arg(z + i) = \frac{\pi}{4} \). ### Step-by-Step Solution: 1. **Express \( z \) in terms of \( x \) and \( y \)**: Let \( z = x + iy \), where \( x \) and \( y \) are real numbers. 2. **Find the expression for \( z + i \)**: \[ z + i = x + iy + i = x + i(y + 1) \] 3. **Set up the argument condition**: Given \( \arg(z + i) = \frac{\pi}{4} \), we know: \[ \tan\left(\frac{\pi}{4}\right) = 1 \] Therefore, we have: \[ \frac{y + 1}{x} = 1 \] 4. **Solve for \( y \)**: From the equation \( \frac{y + 1}{x} = 1 \), we can rearrange it to find \( y \): \[ y + 1 = x \implies y = x - 1 \] 5. **Substitute \( y \) into the expression**: Now substitute \( y = x - 1 \) into the expression \( |z + 1 - i| + |z - 2 + 3i| \): \[ z + 1 - i = x + (x - 1)i + 1 - i = (x + 1) + (x - 2)i \] \[ z - 2 + 3i = x + (x - 1)i - 2 + 3i = (x - 2) + (x + 2)i \] 6. **Calculate the magnitudes**: \[ |z + 1 - i| = \sqrt{(x + 1)^2 + (x - 2)^2} \] \[ |z - 2 + 3i| = \sqrt{(x - 2)^2 + (x + 2)^2} \] 7. **Simplify the expressions**: - For \( |z + 1 - i| \): \[ |z + 1 - i| = \sqrt{(x + 1)^2 + (x - 2)^2} = \sqrt{(x^2 + 2x + 1) + (x^2 - 4x + 4)} = \sqrt{2x^2 - 2x + 5} \] - For \( |z - 2 + 3i| \): \[ |z - 2 + 3i| = \sqrt{(x - 2)^2 + (x + 2)^2} = \sqrt{(x^2 - 4x + 4) + (x^2 + 4x + 4)} = \sqrt{2x^2 + 8} \] 8. **Combine the magnitudes**: Now we need to minimize: \[ |z + 1 - i| + |z - 2 + 3i| = \sqrt{2x^2 - 2x + 5} + \sqrt{2x^2 + 8} \] 9. **Find the minimum value**: To find the minimum value of the sum of these two distances, we can analyze the geometric interpretation. The points \( (-1, 2) \) and \( (2, -3) \) are the points we are measuring distances to. The minimum distance occurs when the line connecting these two points intersects the line \( y = x - 1 \). 10. **Calculate the distance between the two points**: The distance between points \( (-4, 3) \) and \( (4, -3) \) is: \[ d = \sqrt{(4 - (-4))^2 + (-3 - 3)^2} = \sqrt{(8)^2 + (-6)^2} = \sqrt{64 + 36} = \sqrt{100} = 10 \] ### Final Answer: The minimum value of \( |z + 1 - i| + |z - 2 + 3i| \) is \( 10 \).

To solve the problem, we need to find the minimum value of \( |z + 1 - i| + |z - 2 + 3i| \) given that \( \arg(z + i) = \frac{\pi}{4} \). ### Step-by-Step Solution: 1. **Express \( z \) in terms of \( x \) and \( y \)**: Let \( z = x + iy \), where \( x \) and \( y \) are real numbers. 2. **Find the expression for \( z + i \)**: ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise ARCHIVES (SINGLE CORRECT ANSWER TYPE )|11 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise LINKED COMPREHENSION TYPE|36 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

If arg ((z-6-3i)/(z-3-6i))=pi/4 , then maximum value of |z| :

If |z _1 |= 2 and (1 - i)z_2 + (1+i)barz_2 = 8sqrt2 , then the minimum value of |z_1 - z_2| is ______.

If 0 le "arg"(z) le pi/4 , then the least value of |z-i| , is

If z lies on the curve a r g(z+1)=pi/4 , then the minimum value of |z-omega|+|z+omega|,w h e romega=e^(i(2pi)/3) , is

If | (z - i)/(z + 2i)| = 1, |z| = 5/2 then the value of |z + 3i|

If | (z - i)/(z + 2i)| = 1, |z| = 5/2 then the value of |z + 3i|

If |z-i| ≤ 2 and z_0 = 5+3i , the maximum value of |i z + z_0| is

If z =x +iy satisfies |z+1-i|=|z-1+i| then

The locus of the points z satisfying the condition arg ((z-1)/(z+1))=pi/3 is, a

How many solutions system of equations, arg (z + 3 -2i) = - pi/4 and |z + 4 | - |z - 3i| = 5 has ?

CENGAGE ENGLISH-COMPLEX NUMBERS-NUMERICAL VALUE TYPES
  1. If |z+2-i|=5 and maxium value of |3z +9-7i| is M, then the value of M ...

    Text Solution

    |

  2. Let Z1 = (8 + i)sin theta + (7 + 4i)cos theta and Z2 = (1 + 8i)sin th...

    Text Solution

    |

  3. Let A={a in R} the equation (1+2i)x^3-2(3+i)x^2+(5-4i)x+a^2=0 has at ...

    Text Solution

    |

  4. Find the minimum value of the expression E= |z|^2+ |z-3|^2 + |z- 6i|^2...

    Text Solution

    |

  5. If z1 lies on |z-3| + |z + 3| = 8 such that arg z1 = pi//6 , ...

    Text Solution

    |

  6. If z satisfies the condition arg(z + i) = (pi)/(4) . Then the ...

    Text Solution

    |

  7. Let omega ne 1 be a complex cube root of unity. If ( 4 + ...

    Text Solution

    |

  8. Let z be a non - real complex number which satisfies the equatio...

    Text Solution

    |

  9. If z, z 1 and z2 are complex numbers such that z = z 1 z2 ...

    Text Solution

    |

  10. Let z1 , z 2 and z3 be three complex numbers such that z1 + z2+ ...

    Text Solution

    |

  11. Let alpha be the non-real 5 th root of unity. If z1 and z2...

    Text Solution

    |

  12. Let z1, z2 , z3 in C such that |z1 | = |z2| = |z3| = |z1+ z...

    Text Solution

    |

  13. Let A (z1 ) and B(z2 ) be lying on the curve |z-3 - 4i| = 5, w...

    Text Solution

    |

  14. If z1,z2,z3 are three points lying on the circle |z|=2 then the minimu...

    Text Solution

    |

  15. Minimum value of |z1 + 1 | + |z2 + 1 | + |z 1 z 2 + 1 | i...

    Text Solution

    |

  16. If |z 1 |= 2 and (1 - i)z2 + (1+i)barz2 = 8sqrt2, then the mi...

    Text Solution

    |

  17. Given that 1 + 2|z|^(2) = |z^(2) + 1|^(2) + 2 | z + 1 | ^(2), t...

    Text Solution

    |

  18. about to only mathematics

    Text Solution

    |

  19. about to only mathematics

    Text Solution

    |

  20. For any integer k , let alphak=cos(kpi)/7+isin(kpi)/7,w h e r e i=sqrt...

    Text Solution

    |