Home
Class 12
MATHS
If z1,z2,z3 are three points lying on th...

If `z_1,z_2,z_3` are three points lying on the circle `|z|=2` then the minimum value of the expression `|z_1+z_2|^2+|z_2+z_3|^2+|z_3+z_1|^2=`

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the expression \( |z_1 + z_2|^2 + |z_2 + z_3|^2 + |z_3 + z_1|^2 \) where \( z_1, z_2, z_3 \) are points on the circle \( |z| = 2 \), we can follow these steps: ### Step 1: Rewrite the Expression We start with the expression: \[ |z_1 + z_2|^2 + |z_2 + z_3|^2 + |z_3 + z_1|^2 \] Using the property \( |a|^2 = a \overline{a} \), we can expand each term: \[ |z_1 + z_2|^2 = (z_1 + z_2)(\overline{z_1 + z_2}) = |z_1|^2 + |z_2|^2 + 2 \text{Re}(z_1 \overline{z_2}) \] Thus, we have: \[ |z_1 + z_2|^2 + |z_2 + z_3|^2 + |z_3 + z_1|^2 = (|z_1|^2 + |z_2|^2 + 2 \text{Re}(z_1 \overline{z_2})) + (|z_2|^2 + |z_3|^2 + 2 \text{Re}(z_2 \overline{z_3})) + (|z_3|^2 + |z_1|^2 + 2 \text{Re}(z_3 \overline{z_1})) \] ### Step 2: Substitute the Modulus Values Since \( |z_1| = |z_2| = |z_3| = 2 \) (as they lie on the circle \( |z| = 2 \)), we have: \[ |z_1|^2 = |z_2|^2 = |z_3|^2 = 4 \] Thus, substituting these values gives: \[ = 4 + 4 + 4 + 2 \text{Re}(z_1 \overline{z_2}) + 2 \text{Re}(z_2 \overline{z_3}) + 2 \text{Re}(z_3 \overline{z_1}) \] This simplifies to: \[ = 12 + 2 \left( \text{Re}(z_1 \overline{z_2}) + \text{Re}(z_2 \overline{z_3}) + \text{Re}(z_3 \overline{z_1}) \right) \] ### Step 3: Analyze the Real Part Terms To minimize the expression, we need to minimize the term \( \text{Re}(z_1 \overline{z_2}) + \text{Re}(z_2 \overline{z_3}) + \text{Re}(z_3 \overline{z_1}) \). The maximum value of \( |z_1 \overline{z_2}| \) occurs when \( z_1 \) and \( z_2 \) are in the same direction, which is \( 4 \) (since \( |z_1| = |z_2| = 2 \)). ### Step 4: Use Geometric Interpretation The points \( z_1, z_2, z_3 \) can be represented as vectors in the complex plane. The minimum value of the sum of the squares of the distances between these points occurs when they are symmetrically placed around the circle. ### Step 5: Calculate the Minimum Value When \( z_1, z_2, z_3 \) are symmetrically placed (e.g., at \( 120^\circ \) apart), we can find: \[ \text{Re}(z_1 \overline{z_2}) + \text{Re}(z_2 \overline{z_3}) + \text{Re}(z_3 \overline{z_1}) = -6 \] Thus, substituting back into our expression gives: \[ 12 + 2(-6) = 12 - 12 = 0 \] However, since we are looking for the minimum value of the original expression, we find that the minimum value occurs when the vectors are aligned, leading to: \[ = 12 + 0 = 12 \] ### Final Answer The minimum value of the expression \( |z_1 + z_2|^2 + |z_2 + z_3|^2 + |z_3 + z_1|^2 \) is: \[ \boxed{24} \]

To find the minimum value of the expression \( |z_1 + z_2|^2 + |z_2 + z_3|^2 + |z_3 + z_1|^2 \) where \( z_1, z_2, z_3 \) are points on the circle \( |z| = 2 \), we can follow these steps: ### Step 1: Rewrite the Expression We start with the expression: \[ |z_1 + z_2|^2 + |z_2 + z_3|^2 + |z_3 + z_1|^2 \] Using the property \( |a|^2 = a \overline{a} \), we can expand each term: ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise ARCHIVES (SINGLE CORRECT ANSWER TYPE )|11 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise LINKED COMPREHENSION TYPE|36 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

If z_1,z_2,z_3 are three complex numbers such that |z_1|=|z_2|=1 , find the maximum value of |z_1-z_2|^2+|z_2-z_3|^2+|z_3+z_1|^2

Find the minimum value of |z-1 if ||z-3|-|z+1||=2.

Find the minimum value of |z-1| if ||z-3|-|z+1||=2.

If z_1,z_2,z_3 are complex number , such that |z_1|=2, |z_2|=3, |z_3|=4 , the maximum value |z_1-z_2|^(2) + |z_2-z_3|^2 + |z_3-z_1|^2 is : (a) 58 (b) 29 (c) 87 (d) none of these

Let z_1,z_2 and z_3 be three distinct complex numbers , satisfying |z_1|=|z_2|=|z_3|=1 find maximum value of| z1 - z2 |^2 + |z2-z3|^2 + |z3-z1|^2

If z_(1),z_(2) and z_(3) be unimodular complex numbers, then the maximum value of |z_(1)-z_(2)|^(2)+|z_(2)-z_(3)|^(2)+|z_(3)-z_(1)|^(2) , is

If z_1, z_2, z_3, z_4 are the affixes of four point in the Argand plane, z is the affix of a point such that |z-z_1|=|z-z_2|=|z-z_3|=|z-z_4| , then prove that z_1, z_2, z_3, z_4 are concyclic.

If z_1, z_2, z_3, z_4 are the affixes of four point in the Argand plane, z is the affix of a point such that |z-z_1|=|z-z_2|=|z-z_3|=|z-z_4| , then z_1, z_2, z_3, z_4 are

If A (z_1), B (z_2) and C (z_3) are three points in the argand plane where |z_1 +z_2|=||z_1-z_2| and |(1-i)z_1+iz_3|=|z_1|+|z_3|-z_1| , where i = sqrt-1 then

If |z_1|=|z_2|=|z_3|=1 then value of |z_1-z_3|^2+|z_3-z_1|^2+|z_1-z_2|^2 cannot exceed

CENGAGE ENGLISH-COMPLEX NUMBERS-NUMERICAL VALUE TYPES
  1. If |z+2-i|=5 and maxium value of |3z +9-7i| is M, then the value of M ...

    Text Solution

    |

  2. Let Z1 = (8 + i)sin theta + (7 + 4i)cos theta and Z2 = (1 + 8i)sin th...

    Text Solution

    |

  3. Let A={a in R} the equation (1+2i)x^3-2(3+i)x^2+(5-4i)x+a^2=0 has at ...

    Text Solution

    |

  4. Find the minimum value of the expression E= |z|^2+ |z-3|^2 + |z- 6i|^2...

    Text Solution

    |

  5. If z1 lies on |z-3| + |z + 3| = 8 such that arg z1 = pi//6 , ...

    Text Solution

    |

  6. If z satisfies the condition arg(z + i) = (pi)/(4) . Then the ...

    Text Solution

    |

  7. Let omega ne 1 be a complex cube root of unity. If ( 4 + ...

    Text Solution

    |

  8. Let z be a non - real complex number which satisfies the equatio...

    Text Solution

    |

  9. If z, z 1 and z2 are complex numbers such that z = z 1 z2 ...

    Text Solution

    |

  10. Let z1 , z 2 and z3 be three complex numbers such that z1 + z2+ ...

    Text Solution

    |

  11. Let alpha be the non-real 5 th root of unity. If z1 and z2...

    Text Solution

    |

  12. Let z1, z2 , z3 in C such that |z1 | = |z2| = |z3| = |z1+ z...

    Text Solution

    |

  13. Let A (z1 ) and B(z2 ) be lying on the curve |z-3 - 4i| = 5, w...

    Text Solution

    |

  14. If z1,z2,z3 are three points lying on the circle |z|=2 then the minimu...

    Text Solution

    |

  15. Minimum value of |z1 + 1 | + |z2 + 1 | + |z 1 z 2 + 1 | i...

    Text Solution

    |

  16. If |z 1 |= 2 and (1 - i)z2 + (1+i)barz2 = 8sqrt2, then the mi...

    Text Solution

    |

  17. Given that 1 + 2|z|^(2) = |z^(2) + 1|^(2) + 2 | z + 1 | ^(2), t...

    Text Solution

    |

  18. about to only mathematics

    Text Solution

    |

  19. about to only mathematics

    Text Solution

    |

  20. For any integer k , let alphak=cos(kpi)/7+isin(kpi)/7,w h e r e i=sqrt...

    Text Solution

    |