Home
Class 12
MATHS
Minimum value of |z1 + 1 | + |z2 ...

Minimum value of ` |z_1 + 1 | + |z_2 + 1 | + |z _1 z _2 + 1 | if [ z_1 | = 1 and |z_2 | = 1 ` is ________.

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of \( |z_1 + 1| + |z_2 + 1| + |z_1 z_2 + 1| \) given that \( |z_1| = 1 \) and \( |z_2| = 1 \), we can follow these steps: ### Step 1: Understand the Modulus Condition Since \( |z_1| = 1 \) and \( |z_2| = 1 \), both \( z_1 \) and \( z_2 \) lie on the unit circle in the complex plane. Therefore, we can express them as: \[ z_1 = e^{i\theta_1} \quad \text{and} \quad z_2 = e^{i\theta_2} \] for some angles \( \theta_1 \) and \( \theta_2 \). ### Step 2: Rewrite the Expression We need to evaluate: \[ |z_1 + 1| + |z_2 + 1| + |z_1 z_2 + 1| \] ### Step 3: Analyze Each Term 1. **For \( |z_1 + 1| \)**: \[ |z_1 + 1| = |e^{i\theta_1} + 1| = \sqrt{(1 + \cos \theta_1)^2 + \sin^2 \theta_1} = \sqrt{2 + 2\cos \theta_1} = \sqrt{2(1 + \cos \theta_1)} = 2 \cos\left(\frac{\theta_1}{2}\right) \] (using the identity \( 1 + \cos \theta = 2 \cos^2(\theta/2) \)). 2. **For \( |z_2 + 1| \)**: Similarly, \[ |z_2 + 1| = 2 \cos\left(\frac{\theta_2}{2}\right) \] 3. **For \( |z_1 z_2 + 1| \)**: \[ |z_1 z_2 + 1| = |e^{i(\theta_1 + \theta_2)} + 1| = 2 \cos\left(\frac{\theta_1 + \theta_2}{2}\right) \] ### Step 4: Combine the Terms Now we can rewrite the entire expression: \[ |z_1 + 1| + |z_2 + 1| + |z_1 z_2 + 1| = 2 \cos\left(\frac{\theta_1}{2}\right) + 2 \cos\left(\frac{\theta_2}{2}\right) + 2 \cos\left(\frac{\theta_1 + \theta_2}{2}\right) \] ### Step 5: Find the Minimum Value To minimize the expression, we can use the fact that the cosine function achieves its maximum value of 1 when its argument is 0. Thus, the minimum value occurs when: \[ \theta_1 = 0, \quad \theta_2 = 0 \quad \text{(or any multiples of \( 2\pi \))} \] This gives: \[ |z_1 + 1| = 2, \quad |z_2 + 1| = 2, \quad |z_1 z_2 + 1| = 2 \] So: \[ |z_1 + 1| + |z_2 + 1| + |z_1 z_2 + 1| = 2 + 2 + 2 = 6 \] However, we need to find the minimum value of the expression, which occurs when \( z_1 = -1 \) and \( z_2 = -1 \): \[ |(-1) + 1| + |(-1) + 1| + |(-1)(-1) + 1| = |0| + |0| + |2| = 0 + 0 + 2 = 2 \] ### Final Answer Thus, the minimum value of \( |z_1 + 1| + |z_2 + 1| + |z_1 z_2 + 1| \) is \(\boxed{2}\).

To find the minimum value of \( |z_1 + 1| + |z_2 + 1| + |z_1 z_2 + 1| \) given that \( |z_1| = 1 \) and \( |z_2| = 1 \), we can follow these steps: ### Step 1: Understand the Modulus Condition Since \( |z_1| = 1 \) and \( |z_2| = 1 \), both \( z_1 \) and \( z_2 \) lie on the unit circle in the complex plane. Therefore, we can express them as: \[ z_1 = e^{i\theta_1} \quad \text{and} \quad z_2 = e^{i\theta_2} \] for some angles \( \theta_1 \) and \( \theta_2 \). ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise ARCHIVES (SINGLE CORRECT ANSWER TYPE )|11 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise LINKED COMPREHENSION TYPE|36 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

Minimum value of| z1- z2| as z1& z2 over the curves √3

Let z_1, z_2 , z_3 in C such that |z_1 | = |z_2| = |z_3| = |z_1+ z_2+ z _3| = 4 . If |z_1 - z _2 | = | z _1 + z _ 3 | and z_2 ne z_3 , then values of |z_1 + z_2 |* |z_1 + z _ 3| is _____.

Find the minimum value of |z-1 if ||z-3|-|z+1||=2.

If z_(1) = 2 - i , z_(2) = 1 + i , " find " |(z_(1) + z_(2) + 1)/( z_(1) -z_(2) + 1)|

Find the minimum value of |z-1| if ||z-3|-|z+1||=2.

If |z_1 + z_2| = |z_1| + |z_2| is possible if :

If |z _1 |= 2 and (1 - i)z_2 + (1+i)barz_2 = 8sqrt2 , then the minimum value of |z_1 - z_2| is ______.

If z_1 , lies in |z-3|<=4,z_2 on |z-1|+|z+1|=3 and A = |z_1-z_2| , then :

Given that 1 + 2|z|^(2) = |z^(2) + 1|^(2) + 2 | z + 1 | ^(2) , then the value of |z(z + 1 )| is ______.

if z_(1) = 3i and z_(2) =1 + 2i , then find z_(1)z_(2) -z_(1)

CENGAGE ENGLISH-COMPLEX NUMBERS-NUMERICAL VALUE TYPES
  1. If |z+2-i|=5 and maxium value of |3z +9-7i| is M, then the value of M ...

    Text Solution

    |

  2. Let Z1 = (8 + i)sin theta + (7 + 4i)cos theta and Z2 = (1 + 8i)sin th...

    Text Solution

    |

  3. Let A={a in R} the equation (1+2i)x^3-2(3+i)x^2+(5-4i)x+a^2=0 has at ...

    Text Solution

    |

  4. Find the minimum value of the expression E= |z|^2+ |z-3|^2 + |z- 6i|^2...

    Text Solution

    |

  5. If z1 lies on |z-3| + |z + 3| = 8 such that arg z1 = pi//6 , ...

    Text Solution

    |

  6. If z satisfies the condition arg(z + i) = (pi)/(4) . Then the ...

    Text Solution

    |

  7. Let omega ne 1 be a complex cube root of unity. If ( 4 + ...

    Text Solution

    |

  8. Let z be a non - real complex number which satisfies the equatio...

    Text Solution

    |

  9. If z, z 1 and z2 are complex numbers such that z = z 1 z2 ...

    Text Solution

    |

  10. Let z1 , z 2 and z3 be three complex numbers such that z1 + z2+ ...

    Text Solution

    |

  11. Let alpha be the non-real 5 th root of unity. If z1 and z2...

    Text Solution

    |

  12. Let z1, z2 , z3 in C such that |z1 | = |z2| = |z3| = |z1+ z...

    Text Solution

    |

  13. Let A (z1 ) and B(z2 ) be lying on the curve |z-3 - 4i| = 5, w...

    Text Solution

    |

  14. If z1,z2,z3 are three points lying on the circle |z|=2 then the minimu...

    Text Solution

    |

  15. Minimum value of |z1 + 1 | + |z2 + 1 | + |z 1 z 2 + 1 | i...

    Text Solution

    |

  16. If |z 1 |= 2 and (1 - i)z2 + (1+i)barz2 = 8sqrt2, then the mi...

    Text Solution

    |

  17. Given that 1 + 2|z|^(2) = |z^(2) + 1|^(2) + 2 | z + 1 | ^(2), t...

    Text Solution

    |

  18. about to only mathematics

    Text Solution

    |

  19. about to only mathematics

    Text Solution

    |

  20. For any integer k , let alphak=cos(kpi)/7+isin(kpi)/7,w h e r e i=sqrt...

    Text Solution

    |