Home
Class 12
MATHS
Given that 1 + 2|z|^(2) = |z^(2) + 1...

Given that ` 1 + 2|z|^(2) = |z^(2) + 1|^(2) + 2 | z + 1 | ^(2)`, then the value of `|z(z + 1 )|` is ______.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ 1 + 2|z|^2 = |z^2 + 1|^2 + 2|z + 1|^2 \] ### Step 1: Rewrite the equation using properties of complex numbers We know that \( |z|^2 = z \cdot \overline{z} \). Therefore, we can rewrite the equation as: \[ 1 + 2(z \cdot \overline{z}) = |z^2 + 1|^2 + 2|z + 1|^2 \] ### Step 2: Expand the right-hand side Next, we need to expand \( |z^2 + 1|^2 \) and \( |z + 1|^2 \): 1. \( |z^2 + 1|^2 = (z^2 + 1)(\overline{z^2} + 1) = (z^2 + 1)(\overline{z}^2 + 1) \) 2. \( |z + 1|^2 = (z + 1)(\overline{z} + 1) \) ### Step 3: Substitute back into the equation Now, substituting these expansions back into the equation gives us: \[ 1 + 2(z \cdot \overline{z}) = (z^2 + 1)(\overline{z}^2 + 1) + 2(z + 1)(\overline{z} + 1) \] ### Step 4: Simplify the equation Now we simplify the right-hand side: 1. \( (z^2 + 1)(\overline{z}^2 + 1) = z^2\overline{z}^2 + z^2 + \overline{z}^2 + 1 \) 2. \( 2(z + 1)(\overline{z} + 1) = 2(z\overline{z} + z + \overline{z} + 1) = 2(z\overline{z}) + 2z + 2\overline{z} + 2 \) Combining these gives us: \[ 1 + 2(z \cdot \overline{z}) = z^2\overline{z}^2 + z^2 + \overline{z}^2 + 1 + 2(z\overline{z}) + 2z + 2\overline{z} + 2 \] ### Step 5: Collect like terms Collecting like terms leads to: \[ 0 = z^2\overline{z}^2 + z^2 + \overline{z}^2 + 2 + 2(z\overline{z}) + 2z + 2\overline{z} - 2(z\overline{z}) - 1 \] ### Step 6: Set up the equations From the simplification, we can derive two equations: 1. \( z \cdot \overline{z} = 1 \) 2. \( z + \overline{z} = -1 \) ### Step 7: Solve for \( z \) From \( z \cdot \overline{z} = 1 \), we have \( |z| = 1 \). The second equation can be rewritten as: \[ z + \frac{1}{z} = -1 \] Multiplying through by \( z \) gives: \[ z^2 + z + 1 = 0 \] ### Step 8: Find the roots The roots of this equation can be found using the quadratic formula: \[ z = \frac{-1 \pm \sqrt{1 - 4}}{2} = \frac{-1 \pm \sqrt{-3}}{2} = \frac{-1 \pm i\sqrt{3}}{2} \] ### Step 9: Calculate \( |z(z + 1)| \) Now, we need to find \( |z(z + 1)| \): 1. \( z + 1 = \frac{-1 \pm i\sqrt{3}}{2} + 1 = \frac{1 \pm i\sqrt{3}}{2} \) 2. Therefore, \( |z(z + 1)| = |z| \cdot |z + 1| = 1 \cdot \left| \frac{1 \pm i\sqrt{3}}{2} \right| = \frac{1}{2} \sqrt{1^2 + (\sqrt{3})^2} = \frac{1}{2} \cdot 2 = 1 \) Thus, the value of \( |z(z + 1)| \) is: \[ \boxed{1} \]

To solve the problem, we start with the given equation: \[ 1 + 2|z|^2 = |z^2 + 1|^2 + 2|z + 1|^2 \] ### Step 1: Rewrite the equation using properties of complex numbers We know that \( |z|^2 = z \cdot \overline{z} \). Therefore, we can rewrite the equation as: \[ 1 + 2(z \cdot \overline{z}) = |z^2 + 1|^2 + 2|z + 1|^2 \] ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise ARCHIVES (SINGLE CORRECT ANSWER TYPE )|11 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise LINKED COMPREHENSION TYPE|36 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

Let z_1, z_2 , z_3 in C such that |z_1 | = |z_2| = |z_3| = |z_1+ z_2+ z _3| = 4 . If |z_1 - z _2 | = | z _1 + z _ 3 | and z_2 ne z_3 , then values of |z_1 + z_2 |* |z_1 + z _ 3| is _____.

If |z _1 |= 2 and (1 - i)z_2 + (1+i)barz_2 = 8sqrt2 , then the minimum value of |z_1 - z_2| is ______.

Prove that |z_(1) + z_(2)|^(2) + |z_(1)-z_(2)|^(2)=2|z_(1)|^(2) + 2|z_(2)|^(2)

If z, z _1 and z_2 are complex numbers such that z = z _1 z_2 and |barz_2 - z_1| le 1 , then maximum value of |z| - Re(z) is _____.

Minimum value of |z_1 + 1 | + |z_2 + 1 | + |z _1 z _2 + 1 | if [ z_1 | = 1 and |z_2 | = 1 is ________.

Consider the complex numbers z_(1) and z_(2) Satisfying the relation |z_(1)+z_(2)|^(2)=|z_(1)|^(2) + |z_(2)|^(2) Possible difference between the argument of z_(1) and z_(2) is

If |z_(1)+z_(2)|^(2) = |z_(1)|^(2) +|z_(2)|^(2) " the " 6/pi amp (z_(1)/z_(2)) is equal to ……

If z_(1) = 2 - i , z_(2) = 1 + i , " find " |(z_(1) + z_(2) + 1)/( z_(1) -z_(2) + 1)|

If z_1, z_2 in C , z_1^2 in R , z_1(z_1^2-3z_2^2)=2 and z_2(3z_1^2-z_2^2)=11 , then the value of z_1^2+z_2^2 is

Given z_(1)=1 -i, z_(2)= -2 + 4i , calculate the values of a and b if a + bi= (z_(1)z_(2))/(z_(1))

CENGAGE ENGLISH-COMPLEX NUMBERS-NUMERICAL VALUE TYPES
  1. If |z+2-i|=5 and maxium value of |3z +9-7i| is M, then the value of M ...

    Text Solution

    |

  2. Let Z1 = (8 + i)sin theta + (7 + 4i)cos theta and Z2 = (1 + 8i)sin th...

    Text Solution

    |

  3. Let A={a in R} the equation (1+2i)x^3-2(3+i)x^2+(5-4i)x+a^2=0 has at ...

    Text Solution

    |

  4. Find the minimum value of the expression E= |z|^2+ |z-3|^2 + |z- 6i|^2...

    Text Solution

    |

  5. If z1 lies on |z-3| + |z + 3| = 8 such that arg z1 = pi//6 , ...

    Text Solution

    |

  6. If z satisfies the condition arg(z + i) = (pi)/(4) . Then the ...

    Text Solution

    |

  7. Let omega ne 1 be a complex cube root of unity. If ( 4 + ...

    Text Solution

    |

  8. Let z be a non - real complex number which satisfies the equatio...

    Text Solution

    |

  9. If z, z 1 and z2 are complex numbers such that z = z 1 z2 ...

    Text Solution

    |

  10. Let z1 , z 2 and z3 be three complex numbers such that z1 + z2+ ...

    Text Solution

    |

  11. Let alpha be the non-real 5 th root of unity. If z1 and z2...

    Text Solution

    |

  12. Let z1, z2 , z3 in C such that |z1 | = |z2| = |z3| = |z1+ z...

    Text Solution

    |

  13. Let A (z1 ) and B(z2 ) be lying on the curve |z-3 - 4i| = 5, w...

    Text Solution

    |

  14. If z1,z2,z3 are three points lying on the circle |z|=2 then the minimu...

    Text Solution

    |

  15. Minimum value of |z1 + 1 | + |z2 + 1 | + |z 1 z 2 + 1 | i...

    Text Solution

    |

  16. If |z 1 |= 2 and (1 - i)z2 + (1+i)barz2 = 8sqrt2, then the mi...

    Text Solution

    |

  17. Given that 1 + 2|z|^(2) = |z^(2) + 1|^(2) + 2 | z + 1 | ^(2), t...

    Text Solution

    |

  18. about to only mathematics

    Text Solution

    |

  19. about to only mathematics

    Text Solution

    |

  20. For any integer k , let alphak=cos(kpi)/7+isin(kpi)/7,w h e r e i=sqrt...

    Text Solution

    |