Home
Class 12
MATHS
Find the sum 1+(1+2)+(1+2+2^(2))+(1+2+2^...

Find the sum `1+(1+2)+(1+2+2^(2))+(1+2+2^(2)+2^(3))+` …. To n terms.

Text Solution

Verified by Experts

nth term of the series,
`T_(n)=1+2+2^(2)+..+2^(n-1)`
`=(1(2^(n)-1))/(2-1)=2^(n)-1`
`therefore` Sum of the series,
`S=T_(1)+T_(2)+T_(3)+…T_(n)`
`=(2+2^(2)+2^(3)+….+2^(n))-(1+1+1+… n "times")`
`=(2(2^(n)-1))/(2-1)-n`
`=2^(n+1)-2-n`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ILLUSTRATION 5.54|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ILLUSTRATION 5.55|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ILLUSTRATION 5.52|1 Videos
  • PROBABILITY II

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

Find the sum of the series 1 . 3^(2) + 2.5 ^(2) + 3.7^(2) +…+ to n terms

Find the sum 1^2+(1^2+2^2)+(1^2+2^2+3^2)+ up to 22nd term.

Find the sum 1^2+(1^2+2^2)+(1^2+2^2+3^2)+ up to 22nd term.

Find the sum of G.P. : 1-(1)/(3)+(1)/(3^(2))-(1)/(3^(3))+ . . . .. . . . . to n terms.

Find the sum of the series (1^(2)+1)1!+(2^(2)+1)2!+(3^(2)+1)3!+ . .+(n^(2)+1)n! .

the sum 3/1^2+5/(1^2+2^2)+7/(1^2+2^2+3^2)+....... upto 11 terms

Sum to n terms the series (3)/(1 ^(2) . 2 ^(2)) + (5)/( 2 ^(2) . 3 ^(2)) + (7)/( 3 ^(2) . 4 ^(2)) +.............

The sum up to 60 terms of 3/(1^2) + 5/(1^2 + 2^2) + 7/(1^2 + 2^2 + 3^2) + ……. is equal to

Find the sum to n terms of the series : 1^(2)+(1^(2)+2^(2))+(1^(2)+2^(2)+3^(2))+ ….

Find the sum 1+1/(1+2)+1/(1+2+3)++1/(1+2+3++n)dot