Home
Class 12
MATHS
Find the sumsum(0leiltjlen)1....

Find the `sumsum_(0leiltjlen)1`.

Text Solution

AI Generated Solution

To solve the problem of finding the value of the double summation \( \sum_{0 \leq i < j \leq n} 1 \), we can follow these steps: ### Step 1: Understanding the Double Summation The expression \( \sum_{0 \leq i < j \leq n} 1 \) counts the number of pairs \( (i, j) \) where \( i \) and \( j \) are integers from 0 to \( n \) and \( i \) is less than \( j \). ### Step 2: Counting the Pairs For a fixed value of \( j \), \( i \) can take values from 0 to \( j-1 \). Therefore, for each \( j \), the number of valid \( i \) values is \( j \). ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ILLUSTRATION 5.94|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ILLUSTRATION 5.95|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ILLUSTRATION 5.92|1 Videos
  • PROBABILITY II

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

Find the sum sumsum_(0leiltjlen)"^nC_i

Find the sum sumsum_(0leiltjlen) "^nC_i "^nC_j

Find the sum (sumsum)_(0leiltjlen) ""^(n)C_(i) .

Find the sum sumsum_(0lt=ilt=jlt=n)^n C_i^n C_j

If nge3and1,alpha_(1),alpha_(2),.......,alpha_(n-1) are nth roots of unity then the sum sum_(1leiltjlen-1)alpha_(i)alpha(j)=

Find the value of sumsum_(0leiltjlen) (""^(n)C_(i)+""^(n)C_(j)) .

Find the value of sumsum_(0leilejlt=n)c_i^n"" c_j^ndot

Find the value of sumsum_(0leilejlt=n)(i+j)(nC_i+n C_j)dot

If (1 + x)^(n) = sum_(r=0)^(n) C_(r),x^(r) , then prove that (sumsum)_(0leiltjlen) ((i)/(C_(i)) + (j)/(C_(j))) = (n^(2))/(2) sum_(r=0)^(n) (1)/(C_(r)) .

Find the value of (sumsum)_(0leiltjlen) (1+j)(""^(n)C_(i)+""^(n)C_(j)) .