Home
Class 12
MATHS
underset("n-digits")((666 . . . .6)^(2))...

`underset("n-digits")((666 . . . .6)^(2))+underset("n-digits")((888 . . . .8))` is equal to

Text Solution

AI Generated Solution

To solve the problem, we need to evaluate the expression: \[ \text{underset("n-digits")}\left((666\ldots6)^{2}\right) + \text{underset("n-digits")}\left((888\ldots8)\right) \] where \( (666\ldots6) \) has \( n \) digits and \( (888\ldots8) \) also has \( n \) digits. ...
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERICISE 5.6|11 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERICISE 5.7|4 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERICISE 5.4|13 Videos
  • PROBABILITY II

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

If (1+a)(1+a^(2))(1+a^(4)) . . . . (1+a^(128))=underset(r=0)overset(n)suma^(r ) , then n is equal to

{NH(CH_(2))_(6)NH-underset(O)underset(||)(C)-(CH_(2))_(4)-underset(O)underset(||)(C)}_(n) is a

underset(r=0)overset(n)(sum)sin^(2)""(rpi)/(n) is equal to

underset(r=1)overset(n-1)(sum)cos^(2)""(rpi)/(n) is equal to

Value of underset(ntoinfty)(lim)((n+1)^(1//3)+(n+2)^(1//3)+…+(2n)^(1//3))/(n^(4//3)) is equal to

Let f(x)=(x)/((1+x^(n))^(1//n)) for n ge 2 and g(x)=underset("n times")underbrace(fofo ..."of"(x)) , then int x^(n-2)g(x)dx equals to

underset(n to oo)lim" " underset(r=2n+1)overset(3n)sum (n)/(r^(2)-n^(2)) is equal to

The sum, underset(n-1)overset(10)(Sigma)(n(2n+1)(2n-1))/5 is equal to.........

With the help of F.C . Explain which Lewis structure is more stable for the following molecules : (a) N_(2)O: (i) :^(Theta)ddotN =overset(2+)O=ddotN:^(Theta) or (ii) :N -=overset(o+)N-ddotunderset(..)O:^(Theta) (b). H_(2)SO_(4): (i) H-O-overset( :ddotO:^(Theta))overset(|)underset(Theta)underset( :underset(..)O: )underset(|)(S^(+2))-O-H or (ii) H-O-underset( underset(..):O)underset(||)overset(ddotO: )overset(||)S-O-H HNO_(3)(i) H-O-underset(Theta)underset( :underset(..)O: )underset(|)overset(o+)N=ddotO: or (ii) H-O-underset(underset(..):O:_(Theta))underset(|)overset(+2)N-underset(..)ddotO:^(Theta) (d). CI_(2)O: (i) underset(..):ddotCI-ddotunderset(..)O-underset(..)ddotCI: or (ii) :underset(..)ddotO-underset(..)ddot(CI)-underset(..)ddotCI:

underset(r=1)overset(n)(sum)r(.^(n)C_(r)-.^(n)C_(r-1)) is equal to