Home
Class 12
MATHS
Let An=(3/4)-(3/4)^2+(3/4)^3+….+(-1)^(n-...

Let `A_n=(3/4)-(3/4)^2+(3/4)^3+….+(-1)^(n-1)(3/4)^n and B_n = 1-A_n. find the least odd nastural numebr s`n_0, so that B_ngtA_n Aangen_0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the sequences \( A_n \) and \( B_n \) and find the least odd natural number \( n_0 \) such that \( B_n > A_n \) for \( n \geq n_0 \). ### Step 1: Define \( A_n \) The sequence \( A_n \) is given by: \[ A_n = \frac{3}{4} - \left(\frac{3}{4}\right)^2 + \left(\frac{3}{4}\right)^3 - \ldots + (-1)^{n-1} \left(\frac{3}{4}\right)^n \] This is a finite geometric series with the first term \( a = \frac{3}{4} \) and the common ratio \( r = -\frac{3}{4} \). ### Step 2: Sum of the Geometric Series The sum of the first \( n \) terms of a geometric series can be calculated using the formula: \[ S_n = a \frac{1 - r^n}{1 - r} \] Substituting the values of \( a \) and \( r \): \[ A_n = \frac{3/4 \left(1 - (-3/4)^n\right)}{1 - (-3/4)} = \frac{3/4 \left(1 - (-3/4)^n\right)}{7/4} = \frac{3}{7} \left(1 - (-3/4)^n\right) \] ### Step 3: Define \( B_n \) From the problem statement, we have: \[ B_n = 1 - A_n \] Substituting the expression for \( A_n \): \[ B_n = 1 - \frac{3}{7} \left(1 - (-3/4)^n\right) = 1 - \frac{3}{7} + \frac{3}{7}(-3/4)^n = \frac{4}{7} + \frac{3}{7}(-3/4)^n \] ### Step 4: Set Up the Inequality We need to find \( n_0 \) such that: \[ B_n > A_n \] This translates to: \[ \frac{4}{7} + \frac{3}{7}(-3/4)^n > \frac{3}{7} \left(1 - (-3/4)^n\right) \] ### Step 5: Simplify the Inequality Rearranging gives: \[ \frac{4}{7} + \frac{3}{7}(-3/4)^n > \frac{3}{7} - \frac{3}{7}(-3/4)^n \] Combine like terms: \[ \frac{4}{7} + \frac{3}{7}(-3/4)^n + \frac{3}{7}(-3/4)^n > \frac{3}{7} \] \[ \frac{4}{7} + \frac{6}{7}(-3/4)^n > \frac{3}{7} \] Subtract \( \frac{3}{7} \) from both sides: \[ \frac{1}{7} + \frac{6}{7}(-3/4)^n > 0 \] This implies: \[ (-3/4)^n > -\frac{1}{6} \] ### Step 6: Analyze the Inequality Since \( (-3/4)^n \) is negative for odd \( n \), we need to find the smallest odd \( n \) such that: \[ (-3/4)^n > -\frac{1}{6} \] Taking \( n = 1, 3, 5, \ldots \) and checking: - For \( n = 1 \): \[ (-3/4)^1 = -\frac{3}{4} \quad \text{(not greater than -1/6)} \] - For \( n = 3 \): \[ (-3/4)^3 = -\frac{27}{64} \quad \text{(not greater than -1/6)} \] - For \( n = 5 \): \[ (-3/4)^5 = -\frac{243}{1024} \quad \text{(not greater than -1/6)} \] - For \( n = 7 \): \[ (-3/4)^7 = -\frac{2187}{16384} \quad \text{(greater than -1/6)} \] ### Conclusion The least odd natural number \( n_0 \) such that \( B_n > A_n \) for \( n \geq n_0 \) is: \[ \boxed{7} \]

To solve the problem, we need to analyze the sequences \( A_n \) and \( B_n \) and find the least odd natural number \( n_0 \) such that \( B_n > A_n \) for \( n \geq n_0 \). ### Step 1: Define \( A_n \) The sequence \( A_n \) is given by: \[ A_n = \frac{3}{4} - \left(\frac{3}{4}\right)^2 + \left(\frac{3}{4}\right)^3 - \ldots + (-1)^{n-1} \left(\frac{3}{4}\right)^n \] This is a finite geometric series with the first term \( a = \frac{3}{4} \) and the common ratio \( r = -\frac{3}{4} \). ...
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERICISE 5.6|11 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERICISE 5.7|4 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERICISE 5.4|13 Videos
  • PROBABILITY II

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

If a_n=3/4-(3/4)^2+(3/4)^3+...(-1)^(n-1)(3/4)^n and b_n=1-a_n , then find the minimum natural number n, such that b_n>a_n

If in an AP a=15, d=-3 and a_n=0 . Then find the value of n.

sum_(n=1)^(oo)((1)/(4n-3)-(1)/(4n-1))=(pi)/(n) find n

If a_n=n/((n+1)!) then find sum_(n=1)^50 a_n

If S_(n) = sum_(n=1)^(n) (2n + 1)/(n^(4) + 2n^(3) + n^(2)) then S_(10) is less then

If S=sum_(n=2)^(oo) (3n^2+1)/((n^2-1)^3) then 9/4Sequals

If "^nP_4: ^(n+1)P_4=3:4 , find n.

lim_(n->oo)(-3n+(-1)^n)/(4n-(-1)^n) is equal to a. -3/4 b. 0 if n is even c. -3/4 if n is odd d. none of these

If a_1=1a n da_(n+1)=(4+3a_n)/(3+2a_n),ngeq1,a n dif("lim")_(nvecoo)a_n=a , then find the value of adot

If A={x:x=3^(n)-2n-1, n in N} and B={x:x = 4(n-1), n in N} . Then