Home
Class 12
MATHS
If Sigma(r=1)^(n) Tr=n/8(n+1)(n+2)(n+3) ...

If `Sigma_(r=1)^(n) T_r=n/8(n+1)(n+2)(n+3)` then find `Sigma_(r=1)^(n) 1/T_r`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the summation \( \Sigma_{r=1}^{n} \frac{1}{T_r} \) given that \( \Sigma_{r=1}^{n} T_r = \frac{n}{8}(n+1)(n+2)(n+3) \). ### Step-by-step Solution: 1. **Find \( T_n \)**: We know that \( T_n = S_n - S_{n-1} \), where \( S_n = \frac{n}{8}(n+1)(n+2)(n+3) \). - First, we calculate \( S_{n-1} \): \[ S_{n-1} = \frac{n-1}{8}(n)(n+1)(n+2) \] - Now, we can find \( T_n \): \[ T_n = S_n - S_{n-1} = \frac{n}{8}(n+1)(n+2)(n+3) - \frac{n-1}{8}(n)(n+1)(n+2) \] - Simplifying this expression: \[ T_n = \frac{1}{8} \left[ n(n+1)(n+2)(n+3) - (n-1)(n)(n+1)(n+2) \right] \] - Factor out common terms: \[ T_n = \frac{1}{8} n(n+1)(n+2) \left[ (n+3) - (n-1) \right] \] - This simplifies to: \[ T_n = \frac{1}{8} n(n+1)(n+2)(4) = \frac{n(n+1)(n+2)}{2} \] 2. **Find \( \frac{1}{T_n} \)**: \[ \frac{1}{T_n} = \frac{2}{n(n+1)(n+2)} \] 3. **Calculate \( \Sigma_{r=1}^{n} \frac{1}{T_r} \)**: \[ \Sigma_{r=1}^{n} \frac{1}{T_r} = \Sigma_{r=1}^{n} \frac{2}{r(r+1)(r+2)} \] - We can use partial fractions to simplify \( \frac{2}{r(r+1)(r+2)} \): \[ \frac{2}{r(r+1)(r+2)} = \frac{A}{r} + \frac{B}{r+1} + \frac{C}{r+2} \] - Solving for \( A, B, C \): \[ 2 = A(r+1)(r+2) + B(r)(r+2) + C(r)(r+1) \] - By substituting convenient values for \( r \), we can find \( A, B, C \): - Let \( r = 0 \): \( 2 = A(1)(2) \Rightarrow A = 1 \) - Let \( r = -1 \): \( 2 = B(-1)(1) \Rightarrow B = -2 \) - Let \( r = -2 \): \( 2 = C(-2)(-1) \Rightarrow C = 1 \) - Thus, we have: \[ \frac{2}{r(r+1)(r+2)} = \frac{1}{r} - \frac{2}{r+1} + \frac{1}{r+2} \] 4. **Sum the series**: \[ \Sigma_{r=1}^{n} \left( \frac{1}{r} - \frac{2}{r+1} + \frac{1}{r+2} \right) \] - This can be separated into three sums: \[ \Sigma_{r=1}^{n} \frac{1}{r} - 2 \Sigma_{r=1}^{n} \frac{1}{r+1} + \Sigma_{r=1}^{n} \frac{1}{r+2} \] - The first sum is \( H_n \) (the \( n \)-th harmonic number), the second sum is \( H_{n+1} \), and the third sum is \( H_{n+2} \): \[ H_n - 2H_{n+1} + H_{n+2} \] 5. **Final Result**: \[ \Sigma_{r=1}^{n} \frac{1}{T_r} = H_n - 2H_{n+1} + H_{n+2} \]

To solve the problem, we need to find the summation \( \Sigma_{r=1}^{n} \frac{1}{T_r} \) given that \( \Sigma_{r=1}^{n} T_r = \frac{n}{8}(n+1)(n+2)(n+3) \). ### Step-by-step Solution: 1. **Find \( T_n \)**: We know that \( T_n = S_n - S_{n-1} \), where \( S_n = \frac{n}{8}(n+1)(n+2)(n+3) \). - First, we calculate \( S_{n-1} \): \[ ...
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise EXERCIESE ( SINGLE CORRECT ANSWER TYPE )|93 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise EXERCIESE ( LINKED COMPREHENSION TYPE )|60 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERICISE 5.8|10 Videos
  • PROBABILITY II

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

If Sigma_(r=1)^(n) T_(r)=n(2n^(2)+9n+13) , then find the sum Sigma_(r=1)^(n)sqrt(T_(r)) .

If sum_(r=1)^n t_r=n/8(n+1)(n+2)(n+3), then find sum_(r=1)^n1/(t_r)dot

If sum _(r =1) ^(n ) T _(r) = (n +1) ( n +2) ( n +3) then find sum _( r =1) ^(n) (1)/(T _(r))

If S_(n)=Sigma_(r=1)^(n)t_(r)=(1)/(6)n(2n^(2)+9n+13) , then Sigma_(r=1)^(n)sqrt(t_(r)) is equal to

If S_(r)= sum_(r=1)^(n)T_(1)=n(n+1)(n+2)(n+3) then sum_(r=1)^(10) 1/(T_(r)) is equal to

If Sigma_(r=1)^(2n) sin^(-1) x^(r )=n pi, then Sigma__(r=1)^(2n) x_(r ) is equal to

If sum_(r=1)^(n) T_(r)=(n(n+1)(n+2)(n+3))/(8) , then lim_(ntooo) sum_(r=1)^(n) (1)/(T_(r))=

If Sigma_(r=1)^(n) r^4=I(n), " then "Sigma__(r=1)^(n) (2r -1)^4 is equal to

Find the sum Sigma_(r=1)^(n) 1/(r(r+1)(r+2)(r+3)) Also,find Sigma_(r=1)^(oo) 1/(r(r+1)(r+2)(r+3))

If Sigma_(r=1)^(n) cos^(-1)x_(r)=0, then Sigma_(r=1)^(n) x_(r) equals