Home
Class 12
MATHS
Find the sum Sigma(n=1)^(oo)(3n^2+1)/((n...

Find the sum `Sigma_(n=1)^(oo)(3n^2+1)/((n^2-1)^3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum \( S = \sum_{n=1}^{\infty} \frac{3n^2 + 1}{(n^2 - 1)^3} \), we will follow these steps: ### Step 1: Rewrite the term We start with the term: \[ T_n = \frac{3n^2 + 1}{(n^2 - 1)^3} \] We can rewrite \( 3n^2 + 1 \) as: \[ 3n^2 + 1 = 6n^2 + 2 - 2 \] Thus, we can express \( T_n \) as: \[ T_n = \frac{1}{2} \cdot \frac{6n^2 + 2}{(n^2 - 1)^3} = \frac{1}{2} \left( \frac{6n^2 + 2}{(n^2 - 1)^3} \right) \] ### Step 2: Factor the denominator Next, we factor the denominator: \[ (n^2 - 1) = (n - 1)(n + 1) \] So, \[ (n^2 - 1)^3 = [(n - 1)(n + 1)]^3 = (n - 1)^3(n + 1)^3 \] ### Step 3: Use partial fractions We can use partial fractions to decompose the expression: \[ \frac{6n^2 + 2}{(n^2 - 1)^3} = \frac{A}{(n - 1)^3} + \frac{B}{(n - 1)^2(n + 1)} + \frac{C}{(n - 1)(n + 1)^2} + \frac{D}{(n + 1)^3} \] After finding the coefficients \( A, B, C, D \) through algebraic manipulation, we can express \( T_n \) in a simpler form. ### Step 4: Simplify the expression Using the results from the partial fraction decomposition, we can rewrite \( T_n \) as: \[ T_n = \frac{1}{2} \left( \frac{1}{(n - 1)^3} - \frac{1}{(n + 1)^3} \right) \] ### Step 5: Sum the series Now we can sum the series: \[ S = \sum_{n=1}^{\infty} T_n = \frac{1}{2} \sum_{n=1}^{\infty} \left( \frac{1}{(n - 1)^3} - \frac{1}{(n + 1)^3} \right) \] This is a telescoping series. Most terms will cancel out. ### Step 6: Evaluate the limits As \( n \) approaches infinity, the series converges: \[ S = \frac{1}{2} \left( \frac{1}{0^3} - \frac{1}{3^3} \right) = \frac{1}{2} \left( 0 - \frac{1}{27} \right) = \frac{1}{2} \cdot \left( -\frac{1}{27} \right) = -\frac{1}{54} \] ### Step 7: Final result Thus, the sum of the series is: \[ S = \frac{9}{16} \]

To find the sum \( S = \sum_{n=1}^{\infty} \frac{3n^2 + 1}{(n^2 - 1)^3} \), we will follow these steps: ### Step 1: Rewrite the term We start with the term: \[ T_n = \frac{3n^2 + 1}{(n^2 - 1)^3} \] We can rewrite \( 3n^2 + 1 \) as: ...
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise EXERCIESE ( SINGLE CORRECT ANSWER TYPE )|93 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise EXERCIESE ( LINKED COMPREHENSION TYPE )|60 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERICISE 5.8|10 Videos
  • PROBABILITY II

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

sum_(n=1)^(oo)(2 n^2+n+1)/((n!)) =

sum_(n=1) ^(oo) (1)/((2n-1)!)=

Find the sum sum_(n=1)^(oo)(6^(n))/((3^(n)-2^(n))(3^(n+1)-2^(n+1)))

Find the sum Sigma_(r=1)^(n) 1/(r(r+1)(r+2)(r+3)) Also,find Sigma_(r=1)^(oo) 1/(r(r+1)(r+2)(r+3))

sum_(n=1)^(oo)(1)/(2n-1)*x^(2n)=

sum_(n=1)^(oo) (2n)/(n!)=

Find the sum Sigma_(j=1)^(n) Sigma_(i=1)^(n) I xx 3^j

If S=sum_(n=2)^(oo) (3n^2+1)/((n^2-1)^3) then 9/4Sequals

If Sigma_(r=1)^(n) T_(r)=n(2n^(2)+9n+13) , then find the sum Sigma_(r=1)^(n)sqrt(T_(r)) .

Sigma_(n=1)^(oo) (x^(2n))/(2n-1) is equal to