Home
Class 12
MATHS
Find the sum Sigma(r=1)^(oo) (r)/(r^4+1/...

Find the sum `Sigma_(r=1)^(oo) (r)/(r^4+1/4)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum \( S = \sum_{r=1}^{\infty} \frac{r}{r^4 + \frac{1}{4}} \), we will follow these steps: ### Step 1: Rewrite the term in the summation We start with the term: \[ T_r = \frac{r}{r^4 + \frac{1}{4}}. \] We can rewrite the denominator: \[ r^4 + \frac{1}{4} = r^4 + r^2 + \frac{1}{4} - r^2 = (r^2 + \frac{1}{2})^2 - r^2. \] Thus, we have: \[ T_r = \frac{r}{(r^2 + \frac{1}{2})^2 - r^2}. \] ### Step 2: Simplify the expression We can express \( T_r \) in a different form: \[ T_r = \frac{r}{\left(r^2 + \frac{1}{2}\right)^2 - r^2} = \frac{r}{\left(r^2 + \frac{1}{2} - r\right)\left(r^2 + \frac{1}{2} + r\right)}. \] ### Step 3: Partial fraction decomposition We can use partial fractions to simplify \( T_r \): \[ T_r = \frac{1}{2} \left( \frac{1}{r^2 - r + \frac{1}{2}} - \frac{1}{r^2 + r + \frac{1}{2}} \right). \] ### Step 4: Set up the summation Now we can express the sum: \[ S_n = \sum_{r=1}^{n} T_r = \frac{1}{2} \left( \sum_{r=1}^{n} \frac{1}{r^2 - r + \frac{1}{2}} - \sum_{r=1}^{n} \frac{1}{r^2 + r + \frac{1}{2}} \right). \] ### Step 5: Evaluate the limits As \( n \) approaches infinity, we look at the behavior of the sums: \[ \lim_{n \to \infty} S_n. \] The terms will start to cancel out, and we will be left with the first and last terms of the series. ### Step 6: Find the final result After evaluating the limit, we find: \[ S = \lim_{n \to \infty} S_n = 1. \] Thus, the sum \( S = \sum_{r=1}^{\infty} \frac{r}{r^4 + \frac{1}{4}} = 1 \).

To find the sum \( S = \sum_{r=1}^{\infty} \frac{r}{r^4 + \frac{1}{4}} \), we will follow these steps: ### Step 1: Rewrite the term in the summation We start with the term: \[ T_r = \frac{r}{r^4 + \frac{1}{4}}. \] We can rewrite the denominator: ...
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise EXERCIESE ( SINGLE CORRECT ANSWER TYPE )|93 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise EXERCIESE ( LINKED COMPREHENSION TYPE )|60 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERICISE 5.8|10 Videos
  • PROBABILITY II

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

Find the sum Sigma_(r=1)^(oo) (r-2)/((r+2)(r+3)(r+4))

Find the sum Sigma_(r=1)^(n) 1/(r(r+1)(r+2)(r+3)) Also,find Sigma_(r=1)^(oo) 1/(r(r+1)(r+2)(r+3))

Find the sum Sigma_(r=1)^(n) r/((r+1)!) . Also, find the sum of infinite terms.

Find the sum sum_(r=1)^n r/(r+1)!

If Sigma_(r=1)^(n) T_(r)=n(2n^(2)+9n+13) , then find the sum Sigma_(r=1)^(n)sqrt(T_(r)) .

Find the sum sum_(r =1)^(oo) tan^(-1) ((2(2r -1))/(4 + r^(2) (r^(2) -2r + 1)))

Find the sum sum_(r=1)^n r(r+1)(r+2)(r+3)

The value of sum _(r =1) ^(oo) (8r)/(4r ^(4) +1) is equal to :

Find the value of (Sigma_(r=1)^(n) 1/r)/(Sigma_(r=1)^(n) k/((2n-2k+1)(2n-k+1))) .

Find the sum sum_(r=1)^n r(r+1)(r+2)(r+3)dot