Home
Class 12
MATHS
Find the sum 3/(1!+2!+3!)+4/(2!+3!+4!...

Find the sum
`3/(1!+2!+3!)+4/(2!+3!+4!)+...+1000/(998!+999!+1000!)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the series \[ S = \frac{3}{1! + 2! + 3!} + \frac{4}{2! + 3! + 4!} + \ldots + \frac{1000}{998! + 999! + 1000!}, \] we can express the \(n\)-th term of the series. ### Step 1: Identify the \(n\)-th term The \(n\)-th term can be expressed as: \[ T_n = \frac{n + 2}{n! + (n + 1)! + (n + 2)!}. \] ### Step 2: Simplify the denominator We can factor out \(n!\) from the denominator: \[ T_n = \frac{n + 2}{n! \left(1 + (n + 1) + (n + 2)(n + 1)\right)}. \] Calculating the terms inside the parentheses: \[ 1 + (n + 1) + (n + 2)(n + 1) = 1 + (n + 1) + (n^2 + 3n + 2) = n^2 + 4n + 4. \] Thus, we have: \[ T_n = \frac{n + 2}{n! (n^2 + 4n + 4)} = \frac{n + 2}{n! (n + 2)^2}. \] ### Step 3: Cancel terms This simplifies to: \[ T_n = \frac{1}{n! (n + 2)}. \] ### Step 4: Rewrite the term We can rewrite \(T_n\) as: \[ T_n = \frac{1}{(n + 1)!} - \frac{1}{(n + 2)!}. \] ### Step 5: Write the sum Now, we can write the sum \(S\) as: \[ S = \sum_{n=1}^{998} \left( \frac{1}{(n + 1)!} - \frac{1}{(n + 2)!} \right). \] ### Step 6: Recognize the telescoping series This is a telescoping series. When we expand it, we get: \[ S = \left( \frac{1}{2!} - \frac{1}{3!} \right) + \left( \frac{1}{3!} - \frac{1}{4!} \right) + \ldots + \left( \frac{1}{999!} - \frac{1}{1000!} \right). \] Most terms cancel out, leaving us with: \[ S = \frac{1}{2!} - \frac{1}{1000!}. \] ### Step 7: Final result Calculating the final result: \[ S = \frac{1}{2} - \frac{1}{1000!}. \] ### Conclusion Thus, the sum of the series is: \[ S = \frac{1}{2} - \frac{1}{1000!}. \]

To find the sum of the series \[ S = \frac{3}{1! + 2! + 3!} + \frac{4}{2! + 3! + 4!} + \ldots + \frac{1000}{998! + 999! + 1000!}, \] we can express the \(n\)-th term of the series. ...
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise EXERCIESE ( SINGLE CORRECT ANSWER TYPE )|93 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise EXERCIESE ( LINKED COMPREHENSION TYPE )|60 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERICISE 5.8|10 Videos
  • PROBABILITY II

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

Find the sum of x+2x^(2)+3x^(3)+4x^(4) +...

Write as decimals . (a) 4/5 (b) 3/4 (c) 7/1000

Find the sum to n terms of 3 (3)/(8) + 2 (1)/(4) + 1 (1)/(2)+ .....

Find the sum:  (i) 5/6+3+3/4 (ii) 2 3/5+4 7/(10)+2 4/(15)

Find the sum to n terms of the series (1.2.3) + (2.3.4) + (3.4.5) ...

Find the sum of: 24 terms and n terms of 2 (1)/(2) , 3 (1)/(3) , 4 (1)/(6) ,5 ,......,

Find the sum up to 20 terms. 1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+

What is 4% of 1,000?

Find the sum 3/(1xx2)xx1/2+4/(2xx3)xx(1/2)^2+5/(3xx4)xx(1/2)^2+ ton terms.

Find the sum to n terms of the series: 3/(1^2 .2^2)+5/(2^2 .3^2)+7/(3^2 .4^2)+......