Home
Class 12
MATHS
Let S=(sqrt(1))/(1+sqrt1+sqrt(2))+sqrt(2...

Let `S=(sqrt(1))/(1+sqrt1+sqrt(2))+sqrt(2)/(1+sqrt(2)+sqrt(3))+(sqrt(3))/(1+sqrt(3)+sqrt(4))+...+(sqrt(n))/(1+sqrt(n)+(sqrtn+1))=10`
Then find the value of n.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the series given by: \[ S = \sum_{r=1}^{n} \frac{\sqrt{r}}{1 + \sqrt{r} + \sqrt{r+1}} = 10 \] ### Step 1: Simplifying the General Term The general term of the series can be simplified. We have: \[ \frac{\sqrt{r}}{1 + \sqrt{r} + \sqrt{r+1}} \] To simplify this, we can rationalize the denominator. We multiply the numerator and the denominator by the conjugate of the denominator: \[ 1 + \sqrt{r} - \sqrt{r+1} \] Thus, we have: \[ \frac{\sqrt{r}(1 + \sqrt{r} - \sqrt{r+1})}{(1 + \sqrt{r} + \sqrt{r+1})(1 + \sqrt{r} - \sqrt{r+1})} \] ### Step 2: Simplifying the Denominator The denominator simplifies as follows: \[ (1 + \sqrt{r})^2 - (\sqrt{r+1})^2 = 1 + 2\sqrt{r} + r - (r + 1) = 2\sqrt{r} \] So, the general term becomes: \[ \frac{\sqrt{r}(1 + \sqrt{r} - \sqrt{r+1})}{2\sqrt{r}} = \frac{1 + \sqrt{r} - \sqrt{r+1}}{2} \] ### Step 3: Writing the Series Now, we can express the series \(S\): \[ S = \sum_{r=1}^{n} \frac{1 + \sqrt{r} - \sqrt{r+1}}{2} \] This can be split into three separate sums: \[ S = \frac{1}{2} \sum_{r=1}^{n} 1 + \frac{1}{2} \sum_{r=1}^{n} \sqrt{r} - \frac{1}{2} \sum_{r=1}^{n} \sqrt{r+1} \] ### Step 4: Evaluating Each Sum The first sum is straightforward: \[ \sum_{r=1}^{n} 1 = n \] The second sum can be expressed as: \[ \sum_{r=1}^{n} \sqrt{r} \quad \text{and} \quad \sum_{r=1}^{n} \sqrt{r+1} = \sum_{r=2}^{n+1} \sqrt{r} \] Thus, we can rewrite \(S\): \[ S = \frac{1}{2} \left( n + \sum_{r=1}^{n} \sqrt{r} - \sum_{r=2}^{n+1} \sqrt{r} \right) \] The terms \(\sum_{r=1}^{n} \sqrt{r}\) and \(\sum_{r=2}^{n+1} \sqrt{r}\) will cancel out, leaving: \[ S = \frac{1}{2} \left( n + \sqrt{1} - \sqrt{n+1} \right) = \frac{1}{2} \left( n + 1 - \sqrt{n+1} \right) \] ### Step 5: Setting Up the Equation We know that \(S = 10\): \[ \frac{1}{2} (n + 1 - \sqrt{n+1}) = 10 \] Multiplying both sides by 2 gives: \[ n + 1 - \sqrt{n+1} = 20 \] Rearranging this gives: \[ n - \sqrt{n+1} = 19 \] ### Step 6: Substituting and Solving Let \(x = \sqrt{n+1}\). Then \(n = x^2 - 1\). Substituting this into the equation gives: \[ x^2 - 1 - x = 19 \] This simplifies to: \[ x^2 - x - 20 = 0 \] ### Step 7: Factoring the Quadratic Factoring the quadratic: \[ (x - 5)(x + 4) = 0 \] Thus, \(x = 5\) or \(x = -4\). Since \(x\) must be non-negative, we take \(x = 5\). ### Step 8: Finding \(n\) Now substituting back to find \(n\): \[ \sqrt{n+1} = 5 \implies n + 1 = 25 \implies n = 24 \] ### Final Answer The value of \(n\) is: \[ \boxed{24} \]

To solve the problem, we need to evaluate the series given by: \[ S = \sum_{r=1}^{n} \frac{\sqrt{r}}{1 + \sqrt{r} + \sqrt{r+1}} = 10 \] ### Step 1: Simplifying the General Term ...
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise EXERCIESE ( SINGLE CORRECT ANSWER TYPE )|93 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise EXERCIESE ( LINKED COMPREHENSION TYPE )|60 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERICISE 5.8|10 Videos
  • PROBABILITY II

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

(sqrt(3)+1+sqrt(3)+1)/(2sqrt(2))

(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2))-(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2))+(1)/(sqrt(2)+1)-(1)/(sqrt(2)-1)

([(sqrt(2)+isqrt(3))+(sqrt(2)-isqrt(3))])/([(sqrt(3)+1sqrt(2))+(sqrt(3)-1sqrt(2))])

(1)/(2sqrt(5)-sqrt(3))-(2sqrt(5)+sqrt(3))/(2sqrt(5)+sqrt(3)) =

1/(sqrt3 + sqrt2) + 1/(sqrt3 -sqrt2)=

Simplify: 2/(sqrt(5)+\ sqrt(3))+1/(sqrt(3)+\ sqrt(2))-3/(sqrt(5)+\ sqrt(2))

x=sqrt(1+2sqrt(1+3sqrt(1+4sqrt(1+...

The sum of the series (1)/(sqrt(1)+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+ . . . . .+(1)/(sqrt(n^(2)-1)+sqrt(n^(2))) equals

Prove that : (1)/(sqrt(2)+1)+ (1)/(sqrt(3)+sqrt(2))+ (1)/(2+sqrt(3))=1

The value of sqrt(3-2\ sqrt(2)) is (a) sqrt(2)-1 (b) sqrt(2)+1 (c) sqrt(3)-sqrt(2) (d) sqrt(3)+\ sqrt(2)