Home
Class 12
MATHS
Find the sum (1xx2)/(3!)+(2xx(2)^2)/(4!)...

Find the sum `(1xx2)/(3!)+(2xx(2)^2)/(4!)+(3xx(2)^3)/(5!)+ . . . +(20xx(2)^20)/(22!)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum \[ S = \frac{1 \times 2}{3!} + \frac{2 \times (2^2)}{4!} + \frac{3 \times (2^3)}{5!} + \ldots + \frac{20 \times (2^{20})}{22!}, \] we start by identifying the general term of the series. The \( n \)-th term can be expressed as: \[ T_n = \frac{n \times (2^n)}{(n+2)!}. \] ### Step 1: Rewrite the general term We can rewrite the general term \( T_n \) as follows: \[ T_n = \frac{n \times 2^n}{(n+2)!} = \frac{n \times 2^n}{(n+2)(n+1)n!} = \frac{2^n}{(n+1)!} - \frac{2^n}{(n+2)!}. \] ### Step 2: Sum the series Now, we can express the sum \( S \) as: \[ S = \sum_{n=1}^{20} \left( \frac{2^n}{(n+1)!} - \frac{2^n}{(n+2)!} \right). \] ### Step 3: Break the summation into two parts We can separate the summation: \[ S = \sum_{n=1}^{20} \frac{2^n}{(n+1)!} - \sum_{n=1}^{20} \frac{2^n}{(n+2)!}. \] ### Step 4: Change the index of summation For the second summation, we can change the index by letting \( m = n + 1 \): \[ \sum_{n=1}^{20} \frac{2^n}{(n+2)!} = \sum_{m=2}^{21} \frac{2^{m-1}}{m!}. \] ### Step 5: Combine the two sums Now we have: \[ S = \sum_{n=1}^{20} \frac{2^n}{(n+1)!} - \sum_{m=2}^{21} \frac{2^{m-1}}{m!}. \] ### Step 6: Evaluate the sums Now we can evaluate the sums: 1. The first sum is: \[ \sum_{n=1}^{20} \frac{2^n}{(n+1)!} = \sum_{k=2}^{21} \frac{2^{k-1}}{k!} = \frac{1}{2} \sum_{k=2}^{21} \frac{2^k}{k!}. \] 2. The second sum can be expressed as: \[ \sum_{m=2}^{21} \frac{2^{m-1}}{m!} = \frac{1}{2} \sum_{k=2}^{21} \frac{2^k}{k!}. \] ### Step 7: Final simplification Thus, we can see that: \[ S = \frac{1}{2} \sum_{k=2}^{21} \frac{2^k}{k!} - \frac{1}{2} \sum_{k=2}^{21} \frac{2^k}{k!} = \frac{1}{2} \left( \frac{2^2}{2!} - \frac{2^{21}}{22!} \right). \] ### Step 8: Calculate the final value Now we can compute the final value: \[ S = \frac{2}{2} - \frac{2^{21}}{22!} = 1 - \frac{2^{21}}{22!}. \] Thus, the final answer is: \[ S = 1 - \frac{2^{21}}{22!}. \]

To find the sum \[ S = \frac{1 \times 2}{3!} + \frac{2 \times (2^2)}{4!} + \frac{3 \times (2^3)}{5!} + \ldots + \frac{20 \times (2^{20})}{22!}, \] we start by identifying the general term of the series. The \( n \)-th term can be expressed as: ...
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise EXERCIESE ( SINGLE CORRECT ANSWER TYPE )|93 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise EXERCIESE ( LINKED COMPREHENSION TYPE )|60 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERICISE 5.8|10 Videos
  • PROBABILITY II

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

(-1)xx(-2)xx(-3)xx(-4)

(-1)xx(-2)xx(-3)xx(-4)

(-1)xx(-2)xx(-3)xx(-4)

Find the sum 3/(1xx2)xx1/2+4/(2xx3)xx(1/2)^2+5/(3xx4)xx(1/2)^2+ ton terms.

Evaluate: g. 5 (1)/(3) xx 8 (1)/(4) xx 2 (3)/(5)

Find the sum (1^4)/(1xx3)+(2^4)/(3xx5)+(3^4)/(5xx7)+......+(n^4)/((2n-1)(2n+1))

Find the value of the (-4)^(3)xx5^(2)xx6^(0) .

Find the product : 1.2xx3.5xx0.3

Find the sum 1 xx 2 xx .^(n)C_(1) + 2 xx 3 xx .^(n)C_(2) + "….." + n xx (n+1) xx .^(n)C_(n) .

Find the sum of the series 2/(1xx2)+5/(2xx3)xx2+(10)/(3xx4)xx2^2+(17)/(4xx5)xx2^3+ ton terms.