Home
Class 12
MATHS
If log(2)(5.2^(x)+1),log(4)(2^(1-x)+1) a...

If `log_(2)(5.2^(x)+1),log_(4)(2^(1-x)+1)` and 1 are in A.P,then x equals

A

`log_(2)5`

B

`1- log_5 2`

C

`log_(5)2`

D

`1-log_(2)5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x \) such that the logarithmic expressions \( \log_2(5 \cdot 2^x + 1) \), \( \log_4(2^{1-x} + 1) \), and \( 1 \) are in arithmetic progression (A.P.). ### Step-by-Step Solution: 1. **Understanding Arithmetic Progression**: For three terms \( a, b, c \) to be in A.P., the condition is: \[ 2b = a + c \] Here, let: - \( a = \log_2(5 \cdot 2^x + 1) \) - \( b = \log_4(2^{1-x} + 1) \) - \( c = 1 \) Thus, we have: \[ 2 \log_4(2^{1-x} + 1) = \log_2(5 \cdot 2^x + 1) + 1 \] 2. **Converting \( \log_4 \) to \( \log_2 \)**: We know that: \[ \log_4(y) = \frac{\log_2(y)}{\log_2(4)} = \frac{\log_2(y)}{2} \] Therefore, we can rewrite \( b \): \[ 2 \log_4(2^{1-x} + 1) = \log_2(2^{1-x} + 1) \] 3. **Substituting back into the A.P. condition**: Now substituting back into our A.P. condition: \[ \log_2(2^{1-x} + 1) = \log_2(5 \cdot 2^x + 1) + 1 \] 4. **Using properties of logarithms**: We can express \( 1 \) in terms of logarithm: \[ 1 = \log_2(2) \] Thus, we have: \[ \log_2(2^{1-x} + 1) = \log_2(5 \cdot 2^x + 2) \] 5. **Equating the arguments of the logarithms**: Since the logarithmic functions are equal, we can set the arguments equal to each other: \[ 2^{1-x} + 1 = 5 \cdot 2^x + 2 \] 6. **Rearranging the equation**: Rearranging gives: \[ 2^{1-x} - 5 \cdot 2^x + 1 - 2 = 0 \] Simplifying: \[ 2^{1-x} - 5 \cdot 2^x - 1 = 0 \] 7. **Substituting \( y = 2^x \)**: Let \( y = 2^x \), then \( 2^{1-x} = \frac{2}{y} \): \[ \frac{2}{y} - 5y - 1 = 0 \] Multiplying through by \( y \) (assuming \( y \neq 0 \)): \[ 2 - 5y^2 - y = 0 \] Rearranging gives: \[ 5y^2 + y - 2 = 0 \] 8. **Using the quadratic formula**: We can solve this quadratic equation using the quadratic formula: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 5, b = 1, c = -2 \): \[ y = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 5 \cdot (-2)}}{2 \cdot 5} \] \[ = \frac{-1 \pm \sqrt{1 + 40}}{10} = \frac{-1 \pm \sqrt{41}}{10} \] 9. **Finding valid solutions**: We have two potential solutions for \( y \): \[ y = \frac{-1 + \sqrt{41}}{10} \quad \text{(valid since it's positive)} \] \[ y = \frac{-1 - \sqrt{41}}{10} \quad \text{(not valid since it's negative)} \] 10. **Finding \( x \)**: Since \( y = 2^x \): \[ 2^x = \frac{-1 + \sqrt{41}}{10} \] Taking logarithm base 2: \[ x = \log_2\left(\frac{-1 + \sqrt{41}}{10}\right) \] ### Final Answer: Thus, the value of \( x \) is: \[ x = \log_2\left(\frac{-1 + \sqrt{41}}{10}\right) \]

To solve the problem, we need to find the value of \( x \) such that the logarithmic expressions \( \log_2(5 \cdot 2^x + 1) \), \( \log_4(2^{1-x} + 1) \), and \( 1 \) are in arithmetic progression (A.P.). ### Step-by-Step Solution: 1. **Understanding Arithmetic Progression**: For three terms \( a, b, c \) to be in A.P., the condition is: \[ 2b = a + c ...
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise EXERCIESE ( LINKED COMPREHENSION TYPE )|60 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise EXERCIESE ( NUMERICAL VALUE TYPE )|28 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERICISE 5.9|9 Videos
  • PROBABILITY II

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

If log_(3)2,log_(3)(2^(x)-5) and log_(3)(2^(x)-7/2) are in A.P., then x is equal to

If 1,log_9(3^(1-x)+2), log_3(4*3^x-1) are in A.P then x equals to

If log_(10)2,log_(10)(2^(x)-1) and log_(10)(2^(x)+3) are in A.P then the value of x is

If 1, log_3sqrt(3^(1-x)+2), log_3 (4*3^x-1) are in AP then x equals

If log2,log(2^x-1),log(2^x+3) are in A.P., write the value of xdot

If "log"_(8){"log"_(2) "log"_(3) (x^(2) -4x +85)} = (1)/(3) , then x equals to

Solve log_(2)(25^(x+3)-1) = 2 + log_(2)(5^(x+3) + 1) .

Solve log_(2)(25^(x+3)-1) = 2 + log_(2)(5^(x+3) + 1) .

If 5^(3x^(2)"log"_(10)2) = 2^((x + (1)/(2))"log"_(10) 25) , then x equals to

Solve log_(4)(x-1)= log_(2) (x-3) .

CENGAGE ENGLISH-PROGRESSION AND SERIES-EXERCIESE ( SINGLE CORRECT ANSWER TYPE )
  1. If a,b,c are in A.P., then a^(3)+c^(3)-8b^(3) is equal to

    Text Solution

    |

  2. If three positive real numbers a,b ,c are in A.P such that a b c=4 , t...

    Text Solution

    |

  3. If log(2)(5.2^(x)+1),log(4)(2^(1-x)+1) and 1 are in A.P,then x equals

    Text Solution

    |

  4. The largest term common to the sequences 1, 11 , 21 , 31 , to100 term...

    Text Solution

    |

  5. In any A.P. if sum of first six terms is 5 times the sum of next six t...

    Text Solution

    |

  6. If the sides of a right angled triangle are in A.P then the sines of t...

    Text Solution

    |

  7. If a ,1/b ,a n d1/p ,q ,1/r from two arithmetic progressions of the co...

    Text Solution

    |

  8. Suppose that F(n +1) =( 2f(n)+1)/2 for n = 1, 2, 3,.....and f(1)= 2 ...

    Text Solution

    |

  9. Consider an A. P .a1,a2,a3,..... such that a3+a5+a8 =11and a4+a2=-2 th...

    Text Solution

    |

  10. If a(1),a(2),a(3),…. are in A.P., then a(p),a(q),a(r) are in A.P. if p...

    Text Solution

    |

  11. Let alpha,beta in Rdot If alpha,beta^2 are the roots of quadratic equ...

    Text Solution

    |

  12. If the sum of m terms of an A.P. is same as the sum of its n terms, th...

    Text Solution

    |

  13. If Sn, denotes the sum of n terms of an A.P., then S(n+3)-3S(n+2)+3S(n...

    Text Solution

    |

  14. The first term of an A.P. is a and the sum of first p terms is zero, s...

    Text Solution

    |

  15. If Sn denotes the sum of first n terms of an A.P. and (S(3n)-S(n-1))/(...

    Text Solution

    |

  16. The number of terms of an A.P. is even, the sum of odd terms is 24, of...

    Text Solution

    |

  17. The number of terms of an A.P is even : the sum of the odd terms is 24...

    Text Solution

    |

  18. Concentric circles of radii 1,2,3,. . . . ,100 c m are drawn. The inte...

    Text Solution

    |

  19. If a1,a2,a3….a(2n+1) are in A.P then (a(2n+1)-a1)/(a(2n+1)+a1)+(a2n-...

    Text Solution

    |

  20. If a(1), a(2), …..,a(n) are in A.P. with common difference d ne 0, the...

    Text Solution

    |