Home
Class 12
MATHS
The positive integer n for which 2xx2^2x...

The positive integer `n` for which `2xx2^2xx+3xx2^3+4xx2^4++nxx2^n=2^(n+10)` is `510` b. `511` c. `512` d. 513

A

510

B

511

C

512

D

513

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2 \cdot 2^2 + 3 \cdot 2^3 + 4 \cdot 2^4 + \ldots + n \cdot 2^n = 2^{n+10} \), we will follow these steps: ### Step 1: Rewrite the Left-Hand Side The left-hand side can be expressed as: \[ S = \sum_{k=2}^{n} k \cdot 2^k \] This can be rewritten as: \[ S = 2^2 \cdot 2 + 2^3 \cdot 3 + 2^4 \cdot 4 + \ldots + 2^n \cdot n \] ### Step 2: Use the Formula for the Sum of a Series We can use the formula for the sum of the series \( k \cdot r^k \): \[ \sum_{k=1}^{n} k \cdot r^k = r \frac{d}{dr} \left( \sum_{k=0}^{n} r^k \right) \] where \( \sum_{k=0}^{n} r^k = \frac{1 - r^{n+1}}{1 - r} \). ### Step 3: Differentiate the Geometric Series Differentiating the geometric series gives: \[ \sum_{k=1}^{n} k \cdot r^k = r \frac{d}{dr} \left( \frac{1 - r^{n+1}}{1 - r} \right) \] Calculating this, we get: \[ = r \left( \frac{(1 - r^{n+1})'}{1 - r} + \frac{(1 - r^{n+1})(1 - r)'}{(1 - r)^2} \right) \] ### Step 4: Substitute \( r = 2 \) Substituting \( r = 2 \) into the differentiated formula, we can find \( S \): \[ S = 2 \cdot \frac{d}{d2} \left( \frac{1 - 2^{n+1}}{1 - 2} \right) \] ### Step 5: Simplify the Expression After simplifying, we can express \( S \) in terms of \( n \): \[ S = n \cdot 2^{n+1} - 2^{n+2} + 4 \] ### Step 6: Set the Equation Equal to \( 2^{n+10} \) Now we set the left-hand side equal to the right-hand side: \[ n \cdot 2^{n+1} - 2^{n+2} + 4 = 2^{n+10} \] ### Step 7: Rearrange the Equation Rearranging gives us: \[ n \cdot 2^{n+1} - 2^{n+2} - 2^{n+10} + 4 = 0 \] ### Step 8: Factor Out \( 2^{n+1} \) Factoring out \( 2^{n+1} \): \[ 2^{n+1}(n - 2 - 2^9) + 4 = 0 \] ### Step 9: Solve for \( n \) This simplifies to: \[ n - 2 - 512 + 4 = 0 \implies n - 510 = 0 \implies n = 513 \] ### Conclusion Thus, the positive integer \( n \) for which the equation holds true is: \[ \boxed{513} \]

To solve the equation \( 2 \cdot 2^2 + 3 \cdot 2^3 + 4 \cdot 2^4 + \ldots + n \cdot 2^n = 2^{n+10} \), we will follow these steps: ### Step 1: Rewrite the Left-Hand Side The left-hand side can be expressed as: \[ S = \sum_{k=2}^{n} k \cdot 2^k \] This can be rewritten as: ...
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise EXERCIESE ( LINKED COMPREHENSION TYPE )|60 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise EXERCIESE ( NUMERICAL VALUE TYPE )|28 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERICISE 5.9|9 Videos
  • PROBABILITY II

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

The positive integer n for which 2xx2^2+3xx2^3+4xx2^4+......+nxx2^n=2^(n+10) is a. 510 b. 511 c. 512 d. 513

Find the sum to n terms of the series : 1xx2xx3 + 2xx3xx4 + 3xx4xx5 + ...

Find the sum to n terms of the series 1xx2+2xx3+ 3xx4+ 4xx5+......

Find the sum to n terms of the series 1xx2+2xx3+ 3xx4+ 4xx5+......

Find the value of 1 xx 1!+2 xx 2!+3 xx 3!+........+n xx n!

Prove that 1^1xx2^2xx3^3xxxxn^nlt=[(2n+1)//3]^(n(n+1)//2),n in Ndot

Simiplify : (16xx2^(n+1)-4xx2^(n))/(16xx2^(n+2)-2xx2^(n+1))

The value of 1xx2xx3xx4+2xx3xx4xx5+3xx4xx5xx6+…+n(n +1) (n +2) (n +3) , is

Find the sum to n terms of the series : 1 xx 2 + 2 xx 3 + 3xx4 + 4xx5+. . . . . .

Find the sum to n terms of the series : 1xx2xx3 + 2xx3xx4 + 3xx4xx5 + dot dot dot

CENGAGE ENGLISH-PROGRESSION AND SERIES-EXERCIESE ( SINGLE CORRECT ANSWER TYPE )
  1. Find the sum of the series 1+4/5+7/(5^2)+10/(5^3)+...

    Text Solution

    |

  2. The sum of 0.2+0.004+0. 00006+0. 0000008+... to oo is

    Text Solution

    |

  3. The positive integer n for which 2xx2^2xx+3xx2^3+4xx2^4++nxx2^n=2^(n+1...

    Text Solution

    |

  4. If omega is a complex nth root of unity, then underset(r=1)overset(n)...

    Text Solution

    |

  5. about to only mathematics

    Text Solution

    |

  6. The 15th term of the series 2 1/2+1 7/(13)+1 1/9+(20)/(23)+.. is

    Text Solution

    |

  7. If a1, a2, ,an are in H.P., then (a1)/(a2+a3++an),(a2)/(a1+a3++an), ...

    Text Solution

    |

  8. If a1, a2, a3, an are in H.P. and f(k)=(sum(r=1)^n ar)-ak ,t h e n (a...

    Text Solution

    |

  9. If a ,b ,a n dc are in A.P. p ,q ,a n dr are in H.P., and a p ,b q ,a ...

    Text Solution

    |

  10. If a ,b ,a n dc are in A.P. p ,q ,a n dr are in H.P., and a p ,b q ,a ...

    Text Solution

    |

  11. a,b,c,d in R^+ such that a,b and c are in H.P and ap.bq, and cr are in...

    Text Solution

    |

  12. If in a progression a1, a2, a3, e t cdot,(ar-a(r+1)) bears a constant...

    Text Solution

    |

  13. If a,b, and c are in G.P then a+b,2b and b+ c are in

    Text Solution

    |

  14. If a,x,b are in A.P.,a,y,b are in G.P. and a,z,b are in H.P. such that...

    Text Solution

    |

  15. Let n in N ,n > 25. Let A ,G ,H deonote te arithmetic mean, geometric...

    Text Solution

    |

  16. If A.M., G.M., and H.M. of the first and last terms of the series of 1...

    Text Solution

    |

  17. If H1.,H2,…,H20 are 20 harmonic means between 2 and 3, then (H1+2)/(H1...

    Text Solution

    |

  18. If the sum of n terms of an A.P is cn (n-1)where c ne 0 then the sum o...

    Text Solution

    |

  19. If bi=1-ai ,n a=sum(i=1)^n ai ,n b=sum(i=1)^n bi ,t h e nsum(i=1)^n ai...

    Text Solution

    |

  20. The sum 1+3+7+15+31+...to100 terms is 2^(100)-102 b b. 2^(99)-101 c. ...

    Text Solution

    |