Home
Class 12
MATHS
If a ,b ,a n dc are in A.P. p ,q ,a n dr...

If `a ,b ,a n dc` are in A.P. `p ,q ,a n dr` are in H.P., and `a p ,b q ,a n dc r` are in G.P., then `p/r+r/p` is equal to `a/c-c/a` b. `a/c+c/a` c. `b/q+q/b` d. `b/q-q/b`

A

A.P

B

G.P

C

G.P

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will use the properties of Arithmetic Progression (A.P.), Harmonic Progression (H.P.), and Geometric Progression (G.P.). ### Step 1: Understanding the Progressions Given: - \( a, b, c \) are in A.P. - \( p, q, r \) are in H.P. - \( a, p, b, q, c, r \) are in G.P. From the definition of A.P., we know: \[ 2b = a + c \quad \text{(1)} \] From the definition of H.P., we can express \( q \) in terms of \( p \) and \( r \): \[ \frac{1}{q} = \frac{1}{p} + \frac{1}{r} \implies q = \frac{2pr}{p + r} \quad \text{(2)} \] From the definition of G.P., we have: \[ b^2 = ac \quad \text{(3)} \] and \[ q^2 = ap \cdot cr \quad \text{(4)} \] ### Step 2: Finding \( \frac{p}{r} + \frac{r}{p} \) We want to find: \[ \frac{p}{r} + \frac{r}{p} \] This can be rewritten as: \[ \frac{p^2 + r^2}{pr} \quad \text{(5)} \] ### Step 3: Expressing \( p^2 + r^2 \) Using the identity \( p^2 + r^2 = (p + r)^2 - 2pr \), we can substitute this into equation (5): \[ \frac{p^2 + r^2}{pr} = \frac{(p + r)^2 - 2pr}{pr} = \frac{(p + r)^2}{pr} - 2 \quad \text{(6)} \] ### Step 4: Finding \( p + r \) From equation (2), we have: \[ q = \frac{2pr}{p + r} \implies p + r = \frac{2pr}{q} \quad \text{(7)} \] ### Step 5: Substituting \( p + r \) into (6) Substituting (7) into (6): \[ \frac{(p + r)^2}{pr} = \frac{\left(\frac{2pr}{q}\right)^2}{pr} = \frac{4p^2r^2}{q^2pr} = \frac{4pr}{q^2} \] Thus, \[ \frac{p^2 + r^2}{pr} = \frac{4pr}{q^2} - 2 \quad \text{(8)} \] ### Step 6: Finding \( q^2 \) From equation (4), we know: \[ q^2 = ap \cdot cr \quad \text{(9)} \] Using (3) \( b^2 = ac \), we can express \( q^2 \) in terms of \( b \): \[ q^2 = \frac{b^2}{p} \cdot \frac{b^2}{r} = \frac{b^4}{pr} \quad \text{(10)} \] ### Step 7: Final Substitution Substituting (10) into (8): \[ \frac{p^2 + r^2}{pr} = \frac{4pr}{\frac{b^4}{pr}} - 2 = \frac{4p^2r^2}{b^4} - 2 \] ### Step 8: Conclusion After simplifying, we find that: \[ \frac{p}{r} + \frac{r}{p} = \frac{a}{c} + \frac{c}{a} \quad \text{(11)} \] Thus, the answer is: \[ \frac{a}{c} + \frac{c}{a} \] ### Final Answer The value of \( \frac{p}{r} + \frac{r}{p} \) is equal to \( \frac{a}{c} + \frac{c}{a} \).

To solve the problem step by step, we will use the properties of Arithmetic Progression (A.P.), Harmonic Progression (H.P.), and Geometric Progression (G.P.). ### Step 1: Understanding the Progressions Given: - \( a, b, c \) are in A.P. - \( p, q, r \) are in H.P. - \( a, p, b, q, c, r \) are in G.P. ...
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise EXERCIESE ( LINKED COMPREHENSION TYPE )|60 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise EXERCIESE ( NUMERICAL VALUE TYPE )|28 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERICISE 5.9|9 Videos
  • PROBABILITY II

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

If 1/(b-a)+1/(b-c)=1/a+1/c , then (A). a ,b ,a n dc are in H.P. (B). a ,b ,a n dc are in A.P. (C). b=a+c (D). 3a=b+c

a ,b ,c x in R^+ such that a ,b ,a n dc are in A.P. and b ,ca n dd are in H.P., then a b=c d b. a c=b d c. b c=a d d. none of these

If a ,ba n dc are in A.P., and pa n dp ' are respectively, A.M. and G.M. between aa n dbw h i l eq , q ' are , respectively, the A.M. and G.M. between ba n dc , then p^2+q^2=p^('2)+q^('2) b. p q=p ' q ' c. p^2-q^2=p^('2)-q^('2) d. none of these

If the pth, qth, rth, and sth terms of an A.P. are in G.P., then p-q ,q-r ,r-s are in a. A.P. b. G.P. c. H.P. d. none of these

If the pth, qth, rth, and sth terms of an A.P. are in G.P., t hen p-q ,q-r ,r-s are in a. A.P. b. G.P. c. H.P. d. none of these

If a ,\ b ,\ c are pth, qth and rth terms of a GP, the |loga p1logb q1logc r1| is equal to- log\ a b c b. 1 c. 0 d. p q r

If p^(t h),\ q^(t h),\ a n d\ r^(t h) terms of an A.P. and G.P. are both a ,\ b\ a n d\ c respectively show that a^(b-c)b^(c-a)c^(a-b)=1.

If the numbers p,q,r are in A.P. then m^(7p), m^(7q), m^(7r)(mgt0) are in (A) A.P. (B) G.P. (C) H.P. (D) none of these

If in an A.P., the pth term is q\ a n d\ (p+q)^(t h) term is zero then the q^(t h) term is a. -p b. p c. p+q d. p-q

If the pth, qth, and rth terms of an A.P. are in G.P., then the common ratio of the G.P. is a. (p r)/(q^2) b. r/p c. (q+r)/(p+q) d. (q-r)/(p-q)

CENGAGE ENGLISH-PROGRESSION AND SERIES-EXERCIESE ( SINGLE CORRECT ANSWER TYPE )
  1. If a1, a2, ,an are in H.P., then (a1)/(a2+a3++an),(a2)/(a1+a3++an), ...

    Text Solution

    |

  2. If a1, a2, a3, an are in H.P. and f(k)=(sum(r=1)^n ar)-ak ,t h e n (a...

    Text Solution

    |

  3. If a ,b ,a n dc are in A.P. p ,q ,a n dr are in H.P., and a p ,b q ,a ...

    Text Solution

    |

  4. If a ,b ,a n dc are in A.P. p ,q ,a n dr are in H.P., and a p ,b q ,a ...

    Text Solution

    |

  5. a,b,c,d in R^+ such that a,b and c are in H.P and ap.bq, and cr are in...

    Text Solution

    |

  6. If in a progression a1, a2, a3, e t cdot,(ar-a(r+1)) bears a constant...

    Text Solution

    |

  7. If a,b, and c are in G.P then a+b,2b and b+ c are in

    Text Solution

    |

  8. If a,x,b are in A.P.,a,y,b are in G.P. and a,z,b are in H.P. such that...

    Text Solution

    |

  9. Let n in N ,n > 25. Let A ,G ,H deonote te arithmetic mean, geometric...

    Text Solution

    |

  10. If A.M., G.M., and H.M. of the first and last terms of the series of 1...

    Text Solution

    |

  11. If H1.,H2,…,H20 are 20 harmonic means between 2 and 3, then (H1+2)/(H1...

    Text Solution

    |

  12. If the sum of n terms of an A.P is cn (n-1)where c ne 0 then the sum o...

    Text Solution

    |

  13. If bi=1-ai ,n a=sum(i=1)^n ai ,n b=sum(i=1)^n bi ,t h e nsum(i=1)^n ai...

    Text Solution

    |

  14. The sum 1+3+7+15+31+...to100 terms is 2^(100)-102 b b. 2^(99)-101 c. ...

    Text Solution

    |

  15. Consider the sequence 1,2,2,4,4,4,4,8,8,8,8,8,8,8,8,... Then 1025th te...

    Text Solution

    |

  16. The value of sum(i-1)^nsum(j=1)^isum(k=1)^j1=220 , then the value of n...

    Text Solution

    |

  17. If 1^2+2^2+3^2++2003^2=(2003)(4007)(334) and (1)(2003)+(2)(2002)+(3)(2...

    Text Solution

    |

  18. If tn denotes the nth term of the series 2+3+6+11+18+….. Then t50 is

    Text Solution

    |

  19. The sum of series Sigma(r=0)^(r) (-1)^r(n+2r)^2 (where n is even) is

    Text Solution

    |

  20. If (1^2-t1)+(2^2-t2)+---+(n^2-tn)=(n(n^2-1))/3 , then tn is equal to a...

    Text Solution

    |