Home
Class 12
MATHS
The sum 1+3+7+15+31+...to100 terms is 2^...

The sum `1+3+7+15+31+...to100` terms is `2^(100)-102 b` b. `2^(99)-101` c. `2^(101)-102` d. none of these

A

`2^(100)-102`

B

`2^(99)-101`

C

`2^(101)-102`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the sum of the series \(1 + 3 + 7 + 15 + 31 + \ldots\) up to 100 terms, we can follow these steps: ### Step 1: Identify the Pattern The given series is: - \(1\) - \(3\) - \(7\) - \(15\) - \(31\) We can observe that each term can be expressed in the form: - \(1 = 2^1 - 1\) - \(3 = 2^2 - 1\) - \(7 = 2^3 - 1\) - \(15 = 2^4 - 1\) - \(31 = 2^5 - 1\) Continuing this pattern, we can generalize the \(n\)-th term as: \[ T_n = 2^n - 1 \] ### Step 2: Write the Sum of the Series The sum of the first 100 terms can be expressed as: \[ S = T_1 + T_2 + T_3 + \ldots + T_{100} \] Substituting the expression for \(T_n\): \[ S = (2^1 - 1) + (2^2 - 1) + (2^3 - 1) + \ldots + (2^{100} - 1) \] ### Step 3: Simplify the Sum We can separate the terms: \[ S = (2^1 + 2^2 + 2^3 + \ldots + 2^{100}) - (1 + 1 + 1 + \ldots + 1) \] The second part is simply \(100\) (since there are 100 terms). ### Step 4: Calculate the Geometric Series The first part is a geometric series. The sum of a geometric series can be calculated using the formula: \[ \text{Sum} = a \frac{r^n - 1}{r - 1} \] where \(a\) is the first term, \(r\) is the common ratio, and \(n\) is the number of terms. In our case: - \(a = 2\) - \(r = 2\) - \(n = 100\) Thus, the sum becomes: \[ 2 \frac{2^{100} - 1}{2 - 1} = 2(2^{100} - 1) = 2^{101} - 2 \] ### Step 5: Combine the Results Now substituting back into our expression for \(S\): \[ S = (2^{101} - 2) - 100 \] \[ S = 2^{101} - 102 \] ### Conclusion Thus, the sum of the series \(1 + 3 + 7 + 15 + 31 + \ldots\) up to 100 terms is: \[ S = 2^{101} - 102 \] The correct answer is option **C: \(2^{101} - 102\)**.

To solve the problem of finding the sum of the series \(1 + 3 + 7 + 15 + 31 + \ldots\) up to 100 terms, we can follow these steps: ### Step 1: Identify the Pattern The given series is: - \(1\) - \(3\) - \(7\) - \(15\) ...
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise EXERCIESE ( LINKED COMPREHENSION TYPE )|60 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise EXERCIESE ( NUMERICAL VALUE TYPE )|28 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERICISE 5.9|9 Videos
  • PROBABILITY II

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

The sum 1+3+7+15+31+...to100 terms is a. 2^(100)-102 b. 2^(99)-101 c. 2^(101)-102 d. none of these

The largest term common to the sequences 1, 11 , 21 , 31 ,...... to 100 terms and 31 , 36 , 41 , 46 , .... to 100 terms is 381 b. 471 c. 281 d. none of these

The largest term common to the sequences 1, 11 , 21 , 31 , to100 terms and 31 , 36 , 41 , 46 , to100 terms is 381 b. 471 c. 281 d. none of these

The HCF of 100 and 101 is (a)10100 (b) 1001 (c) 10101 (d) None of these

If G and L are the greatest and least values of the expression (2x^(2)-3x+2)/(2x^(2)+3x+2), x epsilonR respectively. The least value of G^(100)+L^(100) is (a) 2^(100) (b) 3^(100) (c) 7^(100) (d) none of these

The sum of i-2-3i+4 up to 100 terms, where i=sqrt(-1) is 50(1-i) b. 25 i c. 25(1+i) d. 100(1-i)

If t_r=2^(r/3)+2^(-r/3), then sum_(r=1)^100 t_r^3 -3 sum_(r=1)^100t_r+1= (A) (2^101+1)/2^100 (B) (2^101-1)/2^100 (C) (2^201+1)/2^100 (D) none of these

The number of terms in te expansion of (1+5x+10x^2+10x^3+x^5)^20 is (A) 100 (B) 101 (C) 120 (D) none of these

The number of terms in the expansion (x^2+ 1/x^2+2)^100 is (A) 3200 (B) 102 (C) 201 (D) none of these

The HCF of first 100 natural numbers is (a) 2 (b) 100 (c) 1 (d) None of these

CENGAGE ENGLISH-PROGRESSION AND SERIES-EXERCIESE ( SINGLE CORRECT ANSWER TYPE )
  1. If the sum of n terms of an A.P is cn (n-1)where c ne 0 then the sum o...

    Text Solution

    |

  2. If bi=1-ai ,n a=sum(i=1)^n ai ,n b=sum(i=1)^n bi ,t h e nsum(i=1)^n ai...

    Text Solution

    |

  3. The sum 1+3+7+15+31+...to100 terms is 2^(100)-102 b b. 2^(99)-101 c. ...

    Text Solution

    |

  4. Consider the sequence 1,2,2,4,4,4,4,8,8,8,8,8,8,8,8,... Then 1025th te...

    Text Solution

    |

  5. The value of sum(i-1)^nsum(j=1)^isum(k=1)^j1=220 , then the value of n...

    Text Solution

    |

  6. If 1^2+2^2+3^2++2003^2=(2003)(4007)(334) and (1)(2003)+(2)(2002)+(3)(2...

    Text Solution

    |

  7. If tn denotes the nth term of the series 2+3+6+11+18+….. Then t50 is

    Text Solution

    |

  8. The sum of series Sigma(r=0)^(r) (-1)^r(n+2r)^2 (where n is even) is

    Text Solution

    |

  9. If (1^2-t1)+(2^2-t2)+---+(n^2-tn)=(n(n^2-1))/3 , then tn is equal to a...

    Text Solution

    |

  10. If (1+3+5++p)+(1+3+5++q)=(1+3+5++r) where each set of parentheses cont...

    Text Solution

    |

  11. If Hn=1+1/2+...+1/ndot , then the value of Sn=1+3/2+5/3+...+(99)/(50) ...

    Text Solution

    |

  12. The sum to 50 terms of the series 3/1^2+5/(1^2+2^2)+7/(1^+2^2+3^2)+...

    Text Solution

    |

  13. Let S=4/(19)+(44)/(19^2)+(444)/(19^3)+ u ptooo . Then s is equal to a....

    Text Solution

    |

  14. If 1-1/3+1/5-1/7+1/9-1/(11)+=pi/4 , then value of 1/(1xx3)+1/(5xx7)+1/...

    Text Solution

    |

  15. If 1/(1^2)+1/(2^2)+1/(3^2)+ tooo=(pi^2)/6,t h e n1/(1^2)+1/(3^2)+1/(5^...

    Text Solution

    |

  16. lim(nrarroo) Sigma(r=1)^(n) (r)/(1xx3xx5xx7xx9xx...xx(2r+1)) is equal ...

    Text Solution

    |

  17. The greatest interger by which 1+Sigma(r=1)^(30) rxxr ! is divisible...

    Text Solution

    |

  18. If Sigma(r=1)^(n) r^4=I(n), " then "Sigma(r=1)^(n) (2r -1)^4 is equal ...

    Text Solution

    |

  19. Value of lim(ntooo)(1+1/3)(1+1/(3^2))(1+1/(3^4))(1+1/(3^8))oo is equal...

    Text Solution

    |

  20. If x1,x2 …,x(20) are in H.P and x1,2,x(20) are in G.P then Sigma(r=1)^...

    Text Solution

    |