Home
Class 12
MATHS
The sum to 50 terms of the series 3/1...

The sum to 50 terms of the series
`3/1^2+5/(1^2+2^2)+7/(1^+2^2+3^2)+….+… is `

A

`100/17`

B

`150/17`

C

`200/51`

D

`50/17`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum to 50 terms of the series \[ \frac{3}{1^2} + \frac{5}{1^2 + 2^2} + \frac{7}{1^2 + 2^2 + 3^2} + \ldots \] we can break it down step by step. ### Step 1: Identify the Numerator The numerators of the series are: 3, 5, 7, ... This is an arithmetic progression (AP) where: - First term \( a = 3 \) - Common difference \( d = 2 \) The \( n \)-th term of this AP can be expressed as: \[ a_n = a + (n - 1)d = 3 + (n - 1) \cdot 2 = 2n + 1 \] ### Step 2: Identify the Denominator The denominators of the series are the sums of squares of the first \( n \) natural numbers. The formula for the sum of squares of the first \( n \) natural numbers is: \[ S_n = \frac{n(n + 1)(2n + 1)}{6} \] Thus, the \( n \)-th term of the series can be expressed as: \[ T_n = \frac{2n + 1}{S_n} = \frac{2n + 1}{\frac{n(n + 1)(2n + 1)}{6}} = \frac{6(2n + 1)}{n(n + 1)(2n + 1)} \] ### Step 3: Simplify the \( n \)-th Term We can simplify \( T_n \): \[ T_n = \frac{6}{n(n + 1)} \] ### Step 4: Rewrite the Series Now we need to find the sum of the first 50 terms: \[ S = \sum_{n=1}^{50} T_n = \sum_{n=1}^{50} \frac{6}{n(n + 1)} \] ### Step 5: Use Partial Fraction Decomposition We can express \( \frac{6}{n(n + 1)} \) as: \[ \frac{6}{n(n + 1)} = 6 \left( \frac{1}{n} - \frac{1}{n + 1} \right) \] ### Step 6: Write the Series in Summation Form Thus, the sum becomes: \[ S = 6 \sum_{n=1}^{50} \left( \frac{1}{n} - \frac{1}{n + 1} \right) \] ### Step 7: Evaluate the Series This is a telescoping series: \[ S = 6 \left( \left( \frac{1}{1} - \frac{1}{2} \right) + \left( \frac{1}{2} - \frac{1}{3} \right) + \ldots + \left( \frac{1}{50} - \frac{1}{51} \right) \right) \] Most terms cancel out, leaving: \[ S = 6 \left( 1 - \frac{1}{51} \right) = 6 \cdot \frac{50}{51} = \frac{300}{51} \] ### Step 8: Simplify the Result Simplifying \( \frac{300}{51} \): \[ \frac{300}{51} = \frac{100}{17} \] Thus, the sum of the series up to 50 terms is: \[ \boxed{\frac{100}{17}} \]

To find the sum to 50 terms of the series \[ \frac{3}{1^2} + \frac{5}{1^2 + 2^2} + \frac{7}{1^2 + 2^2 + 3^2} + \ldots \] we can break it down step by step. ...
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise EXERCIESE ( LINKED COMPREHENSION TYPE )|60 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise EXERCIESE ( NUMERICAL VALUE TYPE )|28 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERICISE 5.9|9 Videos
  • PROBABILITY II

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

The sum of 50 terms of the series 3/(1^2)+5/(1^2+2^2)+7/(1^2+2^2+3^2)+........... is (a). (100)/(17) (b). (150)/(17) (c). (200)/(51) (d). (50)/(17)

Find the sum of infinite terms of the series 3/1^2 + 5/(1^2 + 2^2) + 7/(1^2+2^2+3^2) + 9/(1^2+2^2+3^2+4^2)+...

The sum up to 60 terms of 3/(1^2) + 5/(1^2 + 2^2) + 7/(1^2 + 2^2 + 3^2) + ……. is equal to

Find the sum to n terms of the series : 1^2+(1^2+2^2)+(1^2+2^2+3^2)+.......

Find the sum to n terms of the series: 3/(1^2 .2^2)+5/(2^2 .3^2)+7/(3^2 .4^2)+......

Find the sum to n terms of the series : 1^(2)+(1^(2)+2^(2))+(1^(2)+2^(2)+3^(2))+ ….

Find the sum to n terms of the series : 1^2+(1^2+2^2)+(1^2+2^2+3^2)+dotdotdot

Find the sum to n terms of the series : 1^2+(1^2+2^2)+(1^2+2^2+3^2)+dotdotdot

Find the nth terms and the sum to n term of the series : 1^(2)+(1^(2)+2^(2))+(1^(2)+2^(2)+3^(2))+...

Find the sum to n terms of the series 1 + (1 + 2) + (1 + 2 + 3) + ......

CENGAGE ENGLISH-PROGRESSION AND SERIES-EXERCIESE ( SINGLE CORRECT ANSWER TYPE )
  1. Consider the sequence 1,2,2,4,4,4,4,8,8,8,8,8,8,8,8,... Then 1025th te...

    Text Solution

    |

  2. The value of sum(i-1)^nsum(j=1)^isum(k=1)^j1=220 , then the value of n...

    Text Solution

    |

  3. If 1^2+2^2+3^2++2003^2=(2003)(4007)(334) and (1)(2003)+(2)(2002)+(3)(2...

    Text Solution

    |

  4. If tn denotes the nth term of the series 2+3+6+11+18+….. Then t50 is

    Text Solution

    |

  5. The sum of series Sigma(r=0)^(r) (-1)^r(n+2r)^2 (where n is even) is

    Text Solution

    |

  6. If (1^2-t1)+(2^2-t2)+---+(n^2-tn)=(n(n^2-1))/3 , then tn is equal to a...

    Text Solution

    |

  7. If (1+3+5++p)+(1+3+5++q)=(1+3+5++r) where each set of parentheses cont...

    Text Solution

    |

  8. If Hn=1+1/2+...+1/ndot , then the value of Sn=1+3/2+5/3+...+(99)/(50) ...

    Text Solution

    |

  9. The sum to 50 terms of the series 3/1^2+5/(1^2+2^2)+7/(1^+2^2+3^2)+...

    Text Solution

    |

  10. Let S=4/(19)+(44)/(19^2)+(444)/(19^3)+ u ptooo . Then s is equal to a....

    Text Solution

    |

  11. If 1-1/3+1/5-1/7+1/9-1/(11)+=pi/4 , then value of 1/(1xx3)+1/(5xx7)+1/...

    Text Solution

    |

  12. If 1/(1^2)+1/(2^2)+1/(3^2)+ tooo=(pi^2)/6,t h e n1/(1^2)+1/(3^2)+1/(5^...

    Text Solution

    |

  13. lim(nrarroo) Sigma(r=1)^(n) (r)/(1xx3xx5xx7xx9xx...xx(2r+1)) is equal ...

    Text Solution

    |

  14. The greatest interger by which 1+Sigma(r=1)^(30) rxxr ! is divisible...

    Text Solution

    |

  15. If Sigma(r=1)^(n) r^4=I(n), " then "Sigma(r=1)^(n) (2r -1)^4 is equal ...

    Text Solution

    |

  16. Value of lim(ntooo)(1+1/3)(1+1/(3^2))(1+1/(3^4))(1+1/(3^8))oo is equal...

    Text Solution

    |

  17. If x1,x2 …,x(20) are in H.P and x1,2,x(20) are in G.P then Sigma(r=1)^...

    Text Solution

    |

  18. The value of Sigma(r=1)^(n) (a+r+ar)(-a)^r is equal to

    Text Solution

    |

  19. The sum of series x/(1-x^2)+(x^2)/(1-x^4)+(x^4)/(1-x^8)+ to infinite t...

    Text Solution

    |

  20. The sum of 20 terms of the series whose rth term s given by kT(n)=(-1)...

    Text Solution

    |