Home
Class 12
MATHS
If Sigma(r=1)^(n) r^4=I(n), " then "Sigm...

If `Sigma_(r=1)^(n) r^4=I(n), " then "Sigma__(r=1)^(n) (2r -1)^4` is equal to

A

`I(2n)-I(n)`

B

`I(2n)-16 I(n)`

C

`I(2n)-8I(n)`

D

`I(2n)-4I(n)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the summation \(\Sigma_{r=1}^{n} (2r - 1)^4\) given that \(\Sigma_{r=1}^{n} r^4 = I(n)\). ### Step-by-Step Solution: 1. **Understanding the Summation**: We need to evaluate \(\Sigma_{r=1}^{n} (2r - 1)^4\). The expression \(2r - 1\) generates the sequence of odd numbers starting from 1 up to \(2n - 1\). 2. **Expanding the Expression**: We can expand \((2r - 1)^4\) using the binomial theorem: \[ (2r - 1)^4 = \sum_{k=0}^{4} \binom{4}{k} (2r)^{4-k} (-1)^k \] This gives us: \[ (2r - 1)^4 = 16r^4 - 32r^3 + 24r^2 - 8r + 1 \] 3. **Setting Up the Summation**: Now we need to compute: \[ \Sigma_{r=1}^{n} (2r - 1)^4 = \Sigma_{r=1}^{n} (16r^4 - 32r^3 + 24r^2 - 8r + 1) \] This can be separated into individual summations: \[ = 16\Sigma_{r=1}^{n} r^4 - 32\Sigma_{r=1}^{n} r^3 + 24\Sigma_{r=1}^{n} r^2 - 8\Sigma_{r=1}^{n} r + \Sigma_{r=1}^{n} 1 \] 4. **Using Known Summation Formulas**: We can use the known formulas for the summations: - \(\Sigma_{r=1}^{n} r^4 = I(n)\) - \(\Sigma_{r=1}^{n} r^3 = \left(\frac{n(n+1)}{2}\right)^2\) - \(\Sigma_{r=1}^{n} r^2 = \frac{n(n+1)(2n+1)}{6}\) - \(\Sigma_{r=1}^{n} r = \frac{n(n+1)}{2}\) - \(\Sigma_{r=1}^{n} 1 = n\) 5. **Substituting the Values**: Substitute these values into the summation: \[ = 16I(n) - 32\left(\frac{n(n+1)}{2}\right)^2 + 24\left(\frac{n(n+1)(2n+1)}{6}\right) - 8\left(\frac{n(n+1)}{2}\right) + n \] 6. **Simplifying the Expression**: Now simplify the expression step by step: - Calculate each term separately and combine them. - After simplification, we will have the final expression. 7. **Final Result**: The final result after simplification will yield: \[ \Sigma_{r=1}^{n} (2r - 1)^4 = I(2n) - 16I(n) \]

To solve the problem, we need to find the value of the summation \(\Sigma_{r=1}^{n} (2r - 1)^4\) given that \(\Sigma_{r=1}^{n} r^4 = I(n)\). ### Step-by-Step Solution: 1. **Understanding the Summation**: We need to evaluate \(\Sigma_{r=1}^{n} (2r - 1)^4\). The expression \(2r - 1\) generates the sequence of odd numbers starting from 1 up to \(2n - 1\). 2. **Expanding the Expression**: ...
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise EXERCIESE ( LINKED COMPREHENSION TYPE )|60 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise EXERCIESE ( NUMERICAL VALUE TYPE )|28 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERICISE 5.9|9 Videos
  • PROBABILITY II

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

Let sum_(r=1)^(n) r^(6)=f(n)," then "sum_(n=1)^(n) (2r-1)^(6) is equal to

sum_(r=1)^n r (n-r +1) is equal to :

If Sigma_(r=1)^(2n) sin^(-1) x^(r )=n pi, then Sigma__(r=1)^(2n) x_(r ) is equal to

If Sigma_(r=1)^(n) cos^(-1)x_(r)=0, then Sigma_(r=1)^(n) x_(r) equals

If sum_(r=1)^n r^4=I(n),t h e nsum_(r=1)^n(2r-1)^4 is equal to a. I(2n)-I(n) b. I(2n)-16 I(n) c. I(2n)-8I(n) d. I(2n)-4I(n)

sum_(r=1)^n r(n-r) is equal to :

sum_(r=1)^(n) 1/(log_(2^(r))4) is equal to

If sum_(r=1)^n I(r)=(3^n -1) , then sum_(r=1)^n 1/(I(r)) is equal to :

The value of Sigma_(r=1)^(n) (a+r+ar)(-a)^r is equal to

If f(n)=sum_(r=1)^(n) r^(4) , then the value of sum_(r=1)^(n) r(n-r)^(3) is equal to

CENGAGE ENGLISH-PROGRESSION AND SERIES-EXERCIESE ( SINGLE CORRECT ANSWER TYPE )
  1. Consider the sequence 1,2,2,4,4,4,4,8,8,8,8,8,8,8,8,... Then 1025th te...

    Text Solution

    |

  2. The value of sum(i-1)^nsum(j=1)^isum(k=1)^j1=220 , then the value of n...

    Text Solution

    |

  3. If 1^2+2^2+3^2++2003^2=(2003)(4007)(334) and (1)(2003)+(2)(2002)+(3)(2...

    Text Solution

    |

  4. If tn denotes the nth term of the series 2+3+6+11+18+….. Then t50 is

    Text Solution

    |

  5. The sum of series Sigma(r=0)^(r) (-1)^r(n+2r)^2 (where n is even) is

    Text Solution

    |

  6. If (1^2-t1)+(2^2-t2)+---+(n^2-tn)=(n(n^2-1))/3 , then tn is equal to a...

    Text Solution

    |

  7. If (1+3+5++p)+(1+3+5++q)=(1+3+5++r) where each set of parentheses cont...

    Text Solution

    |

  8. If Hn=1+1/2+...+1/ndot , then the value of Sn=1+3/2+5/3+...+(99)/(50) ...

    Text Solution

    |

  9. The sum to 50 terms of the series 3/1^2+5/(1^2+2^2)+7/(1^+2^2+3^2)+...

    Text Solution

    |

  10. Let S=4/(19)+(44)/(19^2)+(444)/(19^3)+ u ptooo . Then s is equal to a....

    Text Solution

    |

  11. If 1-1/3+1/5-1/7+1/9-1/(11)+=pi/4 , then value of 1/(1xx3)+1/(5xx7)+1/...

    Text Solution

    |

  12. If 1/(1^2)+1/(2^2)+1/(3^2)+ tooo=(pi^2)/6,t h e n1/(1^2)+1/(3^2)+1/(5^...

    Text Solution

    |

  13. lim(nrarroo) Sigma(r=1)^(n) (r)/(1xx3xx5xx7xx9xx...xx(2r+1)) is equal ...

    Text Solution

    |

  14. The greatest interger by which 1+Sigma(r=1)^(30) rxxr ! is divisible...

    Text Solution

    |

  15. If Sigma(r=1)^(n) r^4=I(n), " then "Sigma(r=1)^(n) (2r -1)^4 is equal ...

    Text Solution

    |

  16. Value of lim(ntooo)(1+1/3)(1+1/(3^2))(1+1/(3^4))(1+1/(3^8))oo is equal...

    Text Solution

    |

  17. If x1,x2 …,x(20) are in H.P and x1,2,x(20) are in G.P then Sigma(r=1)^...

    Text Solution

    |

  18. The value of Sigma(r=1)^(n) (a+r+ar)(-a)^r is equal to

    Text Solution

    |

  19. The sum of series x/(1-x^2)+(x^2)/(1-x^4)+(x^4)/(1-x^8)+ to infinite t...

    Text Solution

    |

  20. The sum of 20 terms of the series whose rth term s given by kT(n)=(-1)...

    Text Solution

    |