Home
Class 12
MATHS
Value of lim(ntooo)(1+1/3)(1+1/(3^2))(1+...

Value of `lim_(ntooo)(1+1/3)(1+1/(3^2))(1+1/(3^4))(1+1/(3^8))oo` is equal to `3` b. `6/5` c. `3/2` d. none of these

A

3

B

`6/5`

C

`3/2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{n \to \infty} \left(1 + \frac{1}{3}\right)\left(1 + \frac{1}{3^2}\right)\left(1 + \frac{1}{3^4}\right)\left(1 + \frac{1}{3^8}\right) \cdots \] we can express the product in a more manageable form. ### Step 1: Rewrite the product The product can be rewritten as: \[ \prod_{k=0}^{\infty} \left(1 + \frac{1}{3^{2^k}}\right) \] ### Step 2: Simplify each term Each term in the product can be simplified: \[ 1 + \frac{1}{3^{2^k}} = \frac{3^{2^k} + 1}{3^{2^k}} \] ### Step 3: Rewrite the entire product Thus, the infinite product becomes: \[ \prod_{k=0}^{\infty} \frac{3^{2^k} + 1}{3^{2^k}} = \frac{\prod_{k=0}^{\infty} (3^{2^k} + 1)}{\prod_{k=0}^{\infty} 3^{2^k}} \] ### Step 4: Evaluate the denominator The denominator can be simplified using the formula for the sum of a geometric series: \[ \prod_{k=0}^{\infty} 3^{2^k} = 3^{\sum_{k=0}^{\infty} 2^k} = 3^{2^{n+1} - 1} \text{ (as } n \to \infty \text{)} \] ### Step 5: Evaluate the numerator The numerator involves evaluating \[ \prod_{k=0}^{\infty} (3^{2^k} + 1) \] This product converges, and we can analyze its behavior as \( n \to \infty \). ### Step 6: Use the limit As \( n \to \infty \), the terms \( 3^{2^k} \) grow very large, thus: \[ \frac{3^{2^k} + 1}{3^{2^k}} \to 1 \] ### Step 7: Conclude the limit Therefore, the limit evaluates to: \[ \lim_{n \to \infty} \prod_{k=0}^{n} \left(1 + \frac{1}{3^{2^k}}\right) = \frac{3}{2} \] So the final answer is: \[ \frac{3}{2} \] ### Final Answer Thus, the value of the limit is: **Option c: \( \frac{3}{2} \)** ---

To solve the limit \[ \lim_{n \to \infty} \left(1 + \frac{1}{3}\right)\left(1 + \frac{1}{3^2}\right)\left(1 + \frac{1}{3^4}\right)\left(1 + \frac{1}{3^8}\right) \cdots \] we can express the product in a more manageable form. ...
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise EXERCIESE ( LINKED COMPREHENSION TYPE )|60 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise EXERCIESE ( NUMERICAL VALUE TYPE )|28 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERICISE 5.9|9 Videos
  • PROBABILITY II

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

Value of (1+1/3)(1+1/(3^2))(1+1/(3^4))(1+1/(3^8))........oo is equal to a. 3 b. 6/5 c. 3/2 d. none of these

lim_(nto oo) {(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+...+(1)/(n+n)} is, equal to

lim_(xrarr oo) ((3x^2+2x+1)/(x^2+x+2))^((6x+1)/(3x+1)) , is equal to

The value of lim_(x to oo)((1+3x)/(2+3x))^((1-sqrt(x))/(1-x)) is

Find (1)/(3)+(1)/(2.3^(2))+(1)/(3.3^(3))+(1)/(4.3^(4))+….oo=?

lim_(n->oo) {1/1.3+1/3.5+1/5.7+.....+1/((2n+1)(2n+3)) is equal to

(lim)_(ntooo)sum_(r=1)^n r/(1xx3xx5xx7xx9xxxx(2r+1)) is equal to 1/3 b. 3/2 c. 1/2 d. none of these

1/((2 1/3))+1/((1 3/4)) is equal to (a) 7/(14) (b) (12)/(49) (c) 4 1/(12) (d) None of these

lim_(n->oo)(-3n+(-1)^n)/(4n-(-1)^n) is equal to a. -3/4 b. 0 if n is even c. -3/4 if n is odd d. none of these

The value of lim_(nto oo)(1^(3)+2^(3)+3^(3)+……..+n^(3))/((n^(2)+1)^(2))

CENGAGE ENGLISH-PROGRESSION AND SERIES-EXERCIESE ( SINGLE CORRECT ANSWER TYPE )
  1. Consider the sequence 1,2,2,4,4,4,4,8,8,8,8,8,8,8,8,... Then 1025th te...

    Text Solution

    |

  2. The value of sum(i-1)^nsum(j=1)^isum(k=1)^j1=220 , then the value of n...

    Text Solution

    |

  3. If 1^2+2^2+3^2++2003^2=(2003)(4007)(334) and (1)(2003)+(2)(2002)+(3)(2...

    Text Solution

    |

  4. If tn denotes the nth term of the series 2+3+6+11+18+….. Then t50 is

    Text Solution

    |

  5. The sum of series Sigma(r=0)^(r) (-1)^r(n+2r)^2 (where n is even) is

    Text Solution

    |

  6. If (1^2-t1)+(2^2-t2)+---+(n^2-tn)=(n(n^2-1))/3 , then tn is equal to a...

    Text Solution

    |

  7. If (1+3+5++p)+(1+3+5++q)=(1+3+5++r) where each set of parentheses cont...

    Text Solution

    |

  8. If Hn=1+1/2+...+1/ndot , then the value of Sn=1+3/2+5/3+...+(99)/(50) ...

    Text Solution

    |

  9. The sum to 50 terms of the series 3/1^2+5/(1^2+2^2)+7/(1^+2^2+3^2)+...

    Text Solution

    |

  10. Let S=4/(19)+(44)/(19^2)+(444)/(19^3)+ u ptooo . Then s is equal to a....

    Text Solution

    |

  11. If 1-1/3+1/5-1/7+1/9-1/(11)+=pi/4 , then value of 1/(1xx3)+1/(5xx7)+1/...

    Text Solution

    |

  12. If 1/(1^2)+1/(2^2)+1/(3^2)+ tooo=(pi^2)/6,t h e n1/(1^2)+1/(3^2)+1/(5^...

    Text Solution

    |

  13. lim(nrarroo) Sigma(r=1)^(n) (r)/(1xx3xx5xx7xx9xx...xx(2r+1)) is equal ...

    Text Solution

    |

  14. The greatest interger by which 1+Sigma(r=1)^(30) rxxr ! is divisible...

    Text Solution

    |

  15. If Sigma(r=1)^(n) r^4=I(n), " then "Sigma(r=1)^(n) (2r -1)^4 is equal ...

    Text Solution

    |

  16. Value of lim(ntooo)(1+1/3)(1+1/(3^2))(1+1/(3^4))(1+1/(3^8))oo is equal...

    Text Solution

    |

  17. If x1,x2 …,x(20) are in H.P and x1,2,x(20) are in G.P then Sigma(r=1)^...

    Text Solution

    |

  18. The value of Sigma(r=1)^(n) (a+r+ar)(-a)^r is equal to

    Text Solution

    |

  19. The sum of series x/(1-x^2)+(x^2)/(1-x^4)+(x^4)/(1-x^8)+ to infinite t...

    Text Solution

    |

  20. The sum of 20 terms of the series whose rth term s given by kT(n)=(-1)...

    Text Solution

    |