Home
Class 12
MATHS
If Sigma(r=1)^(n) r(r+1)(2r +3)=an^4+bn...

If `Sigma_(r=1)^(n) r(r+1)(2r +3)=an^4+bn^3+cn^2+dn +e ` then

A

a-b=d-c

B

e=0

C

`a,b-2//3,c-1 " are in " in A.P`

D

`(b+d)//a` is an integer

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the summation \( \Sigma_{r=1}^{n} r(r+1)(2r +3) \) and express it in the form \( an^4 + bn^3 + cn^2 + dn + e \). We will then derive the required relationships among the coefficients \( a, b, c, d, \) and \( e \). ### Step 1: Expand the expression We start by expanding the expression \( r(r+1)(2r + 3) \): \[ r(r+1)(2r + 3) = r(r(2r + 3) + (2r + 3)) = r(2r^2 + 3r + 2r + 3) = 2r^3 + 5r^2 + 3r \] ### Step 2: Write the summation Now we can write the summation: \[ \Sigma_{r=1}^{n} r(r+1)(2r + 3) = \Sigma_{r=1}^{n} (2r^3 + 5r^2 + 3r) \] This can be split into three separate summations: \[ = 2\Sigma_{r=1}^{n} r^3 + 5\Sigma_{r=1}^{n} r^2 + 3\Sigma_{r=1}^{n} r \] ### Step 3: Use known formulas for summations We will use the formulas for the sums of powers: 1. \( \Sigma_{r=1}^{n} r = \frac{n(n+1)}{2} \) 2. \( \Sigma_{r=1}^{n} r^2 = \frac{n(n+1)(2n+1)}{6} \) 3. \( \Sigma_{r=1}^{n} r^3 = \left( \frac{n(n+1)}{2} \right)^2 \) Substituting these into our expression: \[ = 2\left( \frac{n(n+1)}{2} \right)^2 + 5\left( \frac{n(n+1)(2n+1)}{6} \right) + 3\left( \frac{n(n+1)}{2} \right) \] ### Step 4: Simplify each term 1. \( 2\left( \frac{n(n+1)}{2} \right)^2 = \frac{n^2(n+1)^2}{2} \) 2. \( 5\left( \frac{n(n+1)(2n+1)}{6} \right) = \frac{5n(n+1)(2n+1)}{6} \) 3. \( 3\left( \frac{n(n+1)}{2} \right) = \frac{3n(n+1)}{2} \) ### Step 5: Combine the terms Now we combine these terms: \[ \Sigma_{r=1}^{n} r(r+1)(2r + 3) = \frac{n^2(n+1)^2}{2} + \frac{5n(n+1)(2n+1)}{6} + \frac{3n(n+1)}{2} \] ### Step 6: Find a common denominator The common denominator for these fractions is 6: \[ = \frac{3n^2(n+1)^2}{6} + \frac{5n(n+1)(2n+1)}{6} + \frac{9n(n+1)}{6} \] Combining these gives: \[ = \frac{3n^2(n+1)^2 + 5n(n+1)(2n+1) + 9n(n+1)}{6} \] ### Step 7: Expand and simplify Now we expand and simplify the numerator: 1. \( 3n^2(n^2 + 2n + 1) = 3n^4 + 6n^3 + 3n^2 \) 2. \( 5n(n+1)(2n+1) = 10n^3 + 15n^2 + 5n \) 3. \( 9n(n+1) = 9n^2 + 9n \) Combining these: \[ 3n^4 + (6n^3 + 10n^3) + (3n^2 + 15n^2 + 9n^2) + (3n + 5n + 9n) = 3n^4 + 16n^3 + 27n^2 + 17n \] ### Step 8: Final expression Thus, we have: \[ \Sigma_{r=1}^{n} r(r+1)(2r + 3) = \frac{1}{6}(3n^4 + 16n^3 + 27n^2 + 17n) \] This gives us: \[ a = \frac{1}{2}, b = \frac{8}{3}, c = \frac{9}{2}, d = \frac{7}{3}, e = 0 \] ### Step 9: Prove the relationships Now we can prove the required relationships: 1. \( a - b = d - c \) \[ \frac{1}{2} - \frac{8}{3} = \frac{7}{3} - \frac{9}{2} \] Both sides simplify to \( -\frac{13}{6} \). 2. \( e = 0 \) is already established. 3. \( \frac{b + d}{a} \) is an integer: \[ \frac{\frac{8}{3} + \frac{7}{3}}{\frac{1}{2}} = \frac{15/3}{1/2} = 10 \] 4. \( a, \frac{b - 2}{3}, \frac{c - 1}{r} \) is in AP: \[ a = \frac{1}{2}, \frac{b - 2}{3} = \frac{8/3 - 2}{3} = \frac{2}{9}, \frac{c - 1}{r} = \frac{9/2 - 1}{r} = \frac{7/2}{r} \] Check the common difference.

To solve the problem, we need to evaluate the summation \( \Sigma_{r=1}^{n} r(r+1)(2r +3) \) and express it in the form \( an^4 + bn^3 + cn^2 + dn + e \). We will then derive the required relationships among the coefficients \( a, b, c, d, \) and \( e \). ### Step 1: Expand the expression We start by expanding the expression \( r(r+1)(2r + 3) \): \[ r(r+1)(2r + 3) = r(r(2r + 3) + (2r + 3)) = r(2r^2 + 3r + 2r + 3) = 2r^3 + 5r^2 + 3r \] ...
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise EXERCIESE ( MATRIX MATCH TYPE )|3 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise Single correct Answer|54 Videos
  • PROBABILITY II

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

If sum_(r=1)^n r(r+1)(2r+3)=a n^4+b n^3+c n^2+d n+e , then (a) a-b=d-c (b) e=0 (c) a , b-2//3, c-1 are in A.P. (d) (b+d)//a is an integer

If Sigma_(r=1)^(10) r(r-1) ""^(10)C_r = k. 2^9

If Sigma_(r=1)^(n)t_(r)=(1)/(6)n(n+1)(n+2), AA n ge 1, then the value of lim_(nrarroo)Sigma_(r=1)^(n)(1)/(t_(r)) is equal to

If sum_(k=1)^(n) (sum_(m=1)^(k) m^(2))=an^(4)+bn^(3)+cn^(2)+dn+e , then

If Sigma_(r=1)^(n) T_(r)=n(2n^(2)+9n+13) , then find the sum Sigma_(r=1)^(n)sqrt(T_(r)) .

Prove that Sigma_(r=1) ""^(n)C_(r).3^(r)=4^(n)

If S_(n)=Sigma_(r=1)^(n)t_(r)=(1)/(6)n(2n^(2)+9n+13) , then Sigma_(r=1)^(n)sqrt(t_(r)) is equal to

If Sigma_(r=1)^(2n) sin^(-1) x^(r )=n pi, then Sigma__(r=1)^(2n) x_(r ) is equal to

If sum _(r =1) ^(n ) T _(r) = (n +1) ( n +2) ( n +3) then find sum _( r =1) ^(n) (1)/(T _(r))

If Sigma_(r=1)^(n) T_r=n/8(n+1)(n+2)(n+3) then find Sigma_(r=1)^(n) 1/T_r

CENGAGE ENGLISH-PROGRESSION AND SERIES-EXERCIESE ( MULTIPLE CORRECT ANSWER TYPE )
  1. If 0 lt theta lt pi/2, x= underset(n=0)overset(oo)sum cos^(2n) theta, ...

    Text Solution

    |

  2. For the series, S=1+1/((1+3))(1+2)^2+1/((1+3+5))(1+2+3)^2+1/((1+3+5+7)...

    Text Solution

    |

  3. If Sigma(r=1)^(n) r(r+1)(2r +3)=an^4+bn^3+cn^2+dn +e then

    Text Solution

    |

  4. If Sn=1^2-2^2+3^2-4^2+5^2-6^2+ ,t h e n S(40)=-820 b. S(2n)> S(2n+2) ...

    Text Solution

    |

  5. Sum of 1/(sqrt(2)+sqrt(5))+1/(sqrt(5)+sqrt(8))+1/(sqrt(8)+sqrt(11))+1/...

    Text Solution

    |

  6. In the 20 th row of the triangle

    Text Solution

    |

  7. Given that x+y+z=15 when a ,x ,y ,z ,b are in A.P. and 1/x+1/y+1/z=5/3...

    Text Solution

    |

  8. If a, b and c are in H.P., then the value of ((ac+ab-bc)(ab+bc-ac))/(a...

    Text Solution

    |

  9. If p,q and r are in A.P then which of the following is / are true ?

    Text Solution

    |

  10. If x^2+9y^2+25 z^2=x y z((15)/2+5/y+3/z),t h e n x ,y ,a n dz are in ...

    Text Solution

    |

  11. If A1, A2, G1, G2, ; a n dH1, H2 are two arithmetic, geometric and har...

    Text Solution

    |

  12. If 1/(b-a)+1/(b-c)=1/a+1/c , then (A). a ,b ,a n dc are in H.P. (B). a...

    Text Solution

    |

  13. If a,b,c are three distinct numbers in G.P., b,c,a are in A.P and a,bc...

    Text Solution

    |

  14. If a,b,c are in A.P and a^2,b^2,c^2 are in H.P then which is of the fo...

    Text Solution

    |

  15. about to only mathematics

    Text Solution

    |

  16. Let E=1/(1^2)+1/(2^2)+1/(3^2)+ Then, E<3 b. E >3//2 c. E >2 d. E<2

    Text Solution

    |

  17. Sum of certain consecutive odd positive intergers is 57^2 -13^2 The ...

    Text Solution

    |

  18. Sum of certain consecutive odd positive intergers is 57^2 -13^2 The ...

    Text Solution

    |

  19. Sum of certain consecutive odd positive intergers is 57^2 -13^2 The l...

    Text Solution

    |

  20. Consider three distinct real numbers a,b,c in a G.P with a^2+b^2+c^2=t...

    Text Solution

    |