Home
Class 12
MATHS
If Sn=1^2-2^2+3^2-4^2+5^2-6^2+ ,t h e n ...

If `S_n=1^2-2^2+3^2-4^2+5^2-6^2+ ,t h e n` `S_(40)=-820` b. `S_(2n)> S_(2n+2)` c. `S_(51)=1326` d. `S_(2n+1)> S_(2n-1)`

A

`S_(40)=-820`

B

`S_(2n) gt S_(2n+2)`

C

`S_(51)=1326`

D

`S_(2n +1) gt S_(2n-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will analyze the series \( S_n = 1^2 - 2^2 + 3^2 - 4^2 + 5^2 - 6^2 + \ldots \) and verify the given statements one by one. ### Step 1: Finding \( S_n \) for even \( n \) For even \( n \), we can pair the terms: \[ S_n = (1^2 - 2^2) + (3^2 - 4^2) + (5^2 - 6^2) + \ldots + ((n-1)^2 - n^2) \] Each pair can be simplified: \[ k^2 - (k+1)^2 = k^2 - (k^2 + 2k + 1) = -2k - 1 \] Thus, we can express \( S_n \) as: \[ S_n = -\left(2(1 + 3 + 5 + \ldots + (n-1)) + \frac{n}{2}\right) \] The sum of the first \( m \) odd numbers is \( m^2 \), where \( m = \frac{n}{2} \): \[ S_n = -\left(2 \left(\frac{n}{2}\right)^2 + \frac{n}{2}\right) = -\left(\frac{n^2}{2} + \frac{n}{2}\right) = -\frac{n(n+1)}{4} \] ### Step 2: Finding \( S_n \) for odd \( n \) For odd \( n \): \[ S_n = (1^2 - 2^2) + (3^2 - 4^2) + (5^2 - 6^2) + \ldots + (n^2) \] The last term is \( n^2 \), and we can pair the terms similarly: \[ S_n = -\left(2(1 + 3 + 5 + \ldots + (n-2)) + n^2\right) \] The sum of the first \( m \) odd numbers is again \( m^2 \), where \( m = \frac{n-1}{2} \): \[ S_n = -\left(2 \left(\frac{n-1}{2}\right)^2 + n^2\right) = -\left(\frac{(n-1)^2}{2} + n^2\right) \] Simplifying gives: \[ S_n = -\frac{n^2 + n^2 - 2n + 1}{2} = -\frac{2n^2 - 2n + 1}{2} = -n(n + 1)/2 \] ### Step 3: Calculate \( S_{40} \) Since \( 40 \) is even: \[ S_{40} = -\frac{40 \times 41}{4} = -410 \] ### Step 4: Verify the options a. \( S_{40} = -820 \) is **not true** since we calculated \( S_{40} = -410 \). b. \( S_{2n} > S_{2n+2} \): \[ S_{2n} = -\frac{2n(2n + 1)}{4} = -\frac{n(2n + 1)}{2} \] \[ S_{2n+2} = -\frac{(2n+2)(2n+3)}{4} \] Since both are negative, \( S_{2n} \) is greater than \( S_{2n+2} \). c. \( S_{51} = 1326 \): \[ S_{51} = -\frac{51 \times 52}{4} = -663 \text{ (not true)} \] d. \( S_{2n+1} > S_{2n-1} \): \[ S_{2n+1} = -\frac{(2n+1)(2n+2)}{4} \] \[ S_{2n-1} = -\frac{(2n-1)(2n)}{4} \] Both are negative, but \( S_{2n+1} \) is less negative than \( S_{2n-1} \). ### Conclusion Thus, the only true statements are: - b. \( S_{2n} > S_{2n+2} \)

To solve the problem, we will analyze the series \( S_n = 1^2 - 2^2 + 3^2 - 4^2 + 5^2 - 6^2 + \ldots \) and verify the given statements one by one. ### Step 1: Finding \( S_n \) for even \( n \) For even \( n \), we can pair the terms: \[ S_n = (1^2 - 2^2) + (3^2 - 4^2) + (5^2 - 6^2) + \ldots + ((n-1)^2 - n^2) \] ...
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise EXERCIESE ( MATRIX MATCH TYPE )|3 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise Single correct Answer|54 Videos
  • PROBABILITY II

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

If S_n=1^2+(1^2+2^2)+(1^2+2^2+3^2)+ upto n terms, then S_n=(n(n+1)^2(n+2))/(12) b. S_n=(n(n-1)^2(n+2))/(12) c. S_(22)=3276 d. S_(22)=23275

S_n=3/(1^2)+5/(1^2+2^2)+7/(1^2+2^2+3^2)+ upto n terms, then a. S_n=(6n)/(n+1) b. S_n=(6(n+2))/(n+1) c. S_oo=6 d. S_oo=1

The sum S_(n) where T_(n) = (-1)^(n) (n^(2) + n +1)/( n!) is

If S_(n)=(1^(2)-1+1)(1!)+(2^(2)-2+1)(2!)+...+(n^(2)-n+1)(n!) , then S_(50)=

The common difference of an A.P., the sum of whose n terms is S_n , is (a) S_n-2S_(n-1)+S_(n-2) (b) S_n-2S_(n-1)-S_(n-2) (c) S_n-S_(n-2) (d) S_n-S_(n-1)

If the sum of n, 2n, 3n terms of an A.P are S_(1), S_(2), S_(3) , respectively, prove that S_(3) = 3 (S_(2) -S_(1)).

If S_n denotes the sum of n terms of A.P., then S_(n+3)-3S_(n+2)+3S_(n+1)-S_n= (a) S_2-n b. S_(n+1) c. 3S_n d. 0

If S_n=sum_(r=1)^n(1+2+2^2+ .......+2^r)/(2^r), then S_n is equal to (a) 2^n n-1 (b) 1-1/(2^n) (c) n -1+1/(2^n) (d) 2^n-1

A sequence S is defined as follows : S_(n)=(S_(n+1)+S_(n-1))/(2) . If S_(1)=15 and S_(4)=10.5, What is S_(2) ?

Let S_n=1/1^2 + 1/2^2 + 1/3^2 +….. + 1/n^2 and T_n=2 -1/n , then :

CENGAGE ENGLISH-PROGRESSION AND SERIES-EXERCIESE ( MULTIPLE CORRECT ANSWER TYPE )
  1. For the series, S=1+1/((1+3))(1+2)^2+1/((1+3+5))(1+2+3)^2+1/((1+3+5+7)...

    Text Solution

    |

  2. If Sigma(r=1)^(n) r(r+1)(2r +3)=an^4+bn^3+cn^2+dn +e then

    Text Solution

    |

  3. If Sn=1^2-2^2+3^2-4^2+5^2-6^2+ ,t h e n S(40)=-820 b. S(2n)> S(2n+2) ...

    Text Solution

    |

  4. Sum of 1/(sqrt(2)+sqrt(5))+1/(sqrt(5)+sqrt(8))+1/(sqrt(8)+sqrt(11))+1/...

    Text Solution

    |

  5. In the 20 th row of the triangle

    Text Solution

    |

  6. Given that x+y+z=15 when a ,x ,y ,z ,b are in A.P. and 1/x+1/y+1/z=5/3...

    Text Solution

    |

  7. If a, b and c are in H.P., then the value of ((ac+ab-bc)(ab+bc-ac))/(a...

    Text Solution

    |

  8. If p,q and r are in A.P then which of the following is / are true ?

    Text Solution

    |

  9. If x^2+9y^2+25 z^2=x y z((15)/2+5/y+3/z),t h e n x ,y ,a n dz are in ...

    Text Solution

    |

  10. If A1, A2, G1, G2, ; a n dH1, H2 are two arithmetic, geometric and har...

    Text Solution

    |

  11. If 1/(b-a)+1/(b-c)=1/a+1/c , then (A). a ,b ,a n dc are in H.P. (B). a...

    Text Solution

    |

  12. If a,b,c are three distinct numbers in G.P., b,c,a are in A.P and a,bc...

    Text Solution

    |

  13. If a,b,c are in A.P and a^2,b^2,c^2 are in H.P then which is of the fo...

    Text Solution

    |

  14. about to only mathematics

    Text Solution

    |

  15. Let E=1/(1^2)+1/(2^2)+1/(3^2)+ Then, E<3 b. E >3//2 c. E >2 d. E<2

    Text Solution

    |

  16. Sum of certain consecutive odd positive intergers is 57^2 -13^2 The ...

    Text Solution

    |

  17. Sum of certain consecutive odd positive intergers is 57^2 -13^2 The ...

    Text Solution

    |

  18. Sum of certain consecutive odd positive intergers is 57^2 -13^2 The l...

    Text Solution

    |

  19. Consider three distinct real numbers a,b,c in a G.P with a^2+b^2+c^2=t...

    Text Solution

    |

  20. Consider three distinct real numbers a,b,c in a G.P with a^2+b^2+c^2=t...

    Text Solution

    |