Home
Class 12
MATHS
Let S=Sigma(n=1)^(999) (1)/((sqrt(n)+sqr...

Let `S=Sigma_(n=1)^(999) (1)/((sqrt(n)+sqrt(n+1))(4sqrt(n)+4sqrtn+1))` , then S equals ___________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the summation \[ S = \sum_{n=1}^{999} \frac{1}{(\sqrt{n} + \sqrt{n+1})(4\sqrt{n} + 4\sqrt{n} + 1)}. \] ### Step 1: Simplify the Denominator We start by simplifying the denominator: \[ (\sqrt{n} + \sqrt{n+1})(4\sqrt{n} + 4\sqrt{n} + 1) = (\sqrt{n} + \sqrt{n+1})(5\sqrt{n}). \] ### Step 2: Rationalize the Expression Next, we can rationalize the expression by multiplying the numerator and denominator by \((\sqrt{n+1} - \sqrt{n})\): \[ S = \sum_{n=1}^{999} \frac{\sqrt{n+1} - \sqrt{n}}{(\sqrt{n+1} - \sqrt{n})(\sqrt{n} + \sqrt{n+1})(5\sqrt{n})}. \] ### Step 3: Apply the Difference of Squares Using the difference of squares, we can simplify the denominator: \[ (\sqrt{n+1} - \sqrt{n})(\sqrt{n} + \sqrt{n+1}) = n+1 - n = 1. \] Thus, we have: \[ S = \sum_{n=1}^{999} \frac{\sqrt{n+1} - \sqrt{n}}{5\sqrt{n}}. \] ### Step 4: Rearranging the Summation Now we can separate the summation: \[ S = \frac{1}{5} \sum_{n=1}^{999} (\sqrt{n+1} - \sqrt{n}). \] ### Step 5: Telescoping Series The series is telescoping, which means that most terms will cancel out: \[ S = \frac{1}{5} \left( \sqrt{1000} - \sqrt{1} \right). \] ### Step 6: Calculate the Values Calculating the square roots gives us: \[ S = \frac{1}{5} (10 - 1) = \frac{9}{5}. \] ### Final Answer Thus, the value of \( S \) is: \[ \boxed{\frac{9}{5}}. \]

To solve the problem, we need to evaluate the summation \[ S = \sum_{n=1}^{999} \frac{1}{(\sqrt{n} + \sqrt{n+1})(4\sqrt{n} + 4\sqrt{n} + 1)}. \] ### Step 1: Simplify the Denominator We start by simplifying the denominator: ...
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ARCHIVES ( JEE MAIN )(SINGLE CORRECT ANSWER TYPE )|16 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ARCHIVES ( JEE ADVANCED )(SINGLE CORRECT ANSWER TYPE )|3 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise EXERCIESE ( LINKED COMPREHENSION TYPE )|60 Videos
  • PROBABILITY II

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

Let S=sum_(n=1)^(9999)1/((sqrt(n)+sqrt(n+1)) (^4sqrt(n)+^4sqrt(n+1)) , then S equals ___________.

Let T_(n)=(1)/((sqrt(n)+sqrt(n+1))(4sqrt(n)+4sqrt(n+1))) and S_(n)=sum_(r=1)^(n)T_(r) then find S_(15) .

lim_(n to oo)[(sqrt(n+1)+sqrt(n+2)+....+sqrt(2n))/(n sqrt((n)))]

lim_(n rarr oo)n[sqrt(n+1)-sqrt(n))]

The value of : lim_(ntooo)((1)/(sqrtn sqrt(n+1))+(1)/(sqrtn sqrt(n+2))+ (1)/(sqrtn sqrt(n +3)) + ...... +(1)/(sqrtn sqrt(2n))) is:

Prove that 1+(1)/(sqrt2)+(1)/(sqrt3)+....+(1)/(sqrtn) ge sqrtn, AA n in N

Evaluate S=sum_(r=0)^(n-1)(1)/(sqrt(4n^(2)-r^(2)))as n rarrinfty .

lim_(n->oo) ((sqrt(n^2+n)-1)/n)^(2sqrt(n^2+n)-1)

If 4cos36^(@)+cot(7(1^(@))/(2))=sqrt(n_(1))+sqrt(n_(2))+sqrt(n_(3))+sqrt(n_(4))+sqrt(n_(5))+sqrt(n_(6)) , then the value of ((Sigma_(i=1)^(6)n_(i)^(2))/(10)) is equal to

lim_(n to oo)(1)/(n)(1+sqrt((n)/(n+1))+sqrt((n)/(n+2))+....+sqrt((n)/(4n-3))) is equal to:

CENGAGE ENGLISH-PROGRESSION AND SERIES-EXERCIESE ( NUMERICAL VALUE TYPE )
  1. The terms a1, a2, a3 from an arithmetic sequence whose sum s 18. The t...

    Text Solution

    |

  2. Let the sum of first three terms of G.P. with real terms be 13/12 and ...

    Text Solution

    |

  3. The first term of an arithmetic progression is 1 and the sum of the fi...

    Text Solution

    |

  4. A person drops a ball from an 80 m tall building and each time the bal...

    Text Solution

    |

  5. Metals have conductivity in the order of ohm^(-1) cm^(-1)

    Text Solution

    |

  6. The number of positive integral ordered pairs of (a ,b) such that 6,a ...

    Text Solution

    |

  7. If the roots of 10 x^3-n x^2-54 x-27=0 are in harmonic oprogresi...

    Text Solution

    |

  8. Given a,b,c are in A.P.,b,c,d are in G.P and c,d,e are in H.P .If a=2 ...

    Text Solution

    |

  9. Let Sk be sum of an indinite G.P whose first term is 'K' and commmon r...

    Text Solution

    |

  10. The value of the sum Sigma(i=1)^(20) i(1/i+1/(i+1)+1/(i+2)+.....+1/(2)...

    Text Solution

    |

  11. The difference between the sum of the first k terms of the series 1^3+...

    Text Solution

    |

  12. The vlaue of the Sigma(n=0)^(oo) (2n+3)/(3^n) is equal to .

    Text Solution

    |

  13. The sum of the infinite Arithmetico -Geometric progression3,4,4,… is .

    Text Solution

    |

  14. Sigma(r=1)^(50)(r^2)/(r^2+(11-r)^2) is equal to .

    Text Solution

    |

  15. If Sigma(r=1)^(50) (2)/(r^2+(11-r^2)), then the value of n is

    Text Solution

    |

  16. Let lt an gt be an arithmetic sequence of 99 terms such that sum of it...

    Text Solution

    |

  17. Find the sum of series upto n terms ((2n+1)/(2n-1))+3((2n+1)/(2n-1))^2...

    Text Solution

    |

  18. Let S=Sigma(n=1)^(999) (1)/((sqrt(n)+sqrt(n+1))(4sqrt(n)+4sqrtn+1)) , ...

    Text Solution

    |

  19. Let S denote sum of the series 3/(2^3)+4/(2^4 .3)+5/(2^6 .3)+6/(2^7 .5...

    Text Solution

    |

  20. The sum (7)/(2^2xx5^2)+13/(5^2xx8^2)+19/(8^2xx11^2)+…10 terms is S, th...

    Text Solution

    |