Home
Class 12
MATHS
Prove that 2^n >1+nsqrt(2^(n-1)),AAn >2 ...

Prove that `2^n >1+nsqrt(2^(n-1)),AAn >2` where `n` is a positive integer.

Text Solution

Verified by Experts

`2^(n) gt 1 + n sqrt(2^(n - 1))`
`implies (2^(n) - 1)/(2 - 1) gt n 2^((n - 1)//2)`
Now, `(2^(n) - 1)//(2 - 1)` is the sum of a G.P whose first term is 1 and common ratio is 2.
We have to prove that `1 + 2 + 2^(2) + 2^(3) + …. + 2^(n - 1) ge n xx 2^((n - 1)//2)`.
Now,
Using A.M. `ge` G.M., we get
`(1 + 2 + 2^(2) + ..... 2^(n - 1))/(n) ge (1 xx 2 xx 2^(2) xx 2^(3) ... 2^(n - 1))^(1//n)`
Now, `R.H.S = (2^(1 + 2 + 3 +... ( n - 1)))^(1//n)`
`= [2^((n - 1) n//2)]^(1//n) = 2^((n - 1)//2)`
Hence, `1 + 2 + 2^(2) + .... + 2^(n - 1) gt n xx 2^((n - 1)//2)`
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Example 1|1 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Example 2|1 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Comprehension|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos

Similar Questions

Explore conceptually related problems

If A=[[3,-4],[1,-1]] , then prove that A^n=[[1+2n,-4n],[n,1-2n]] , where n is any positive integer.

If A= [(3 , -4), (1 , -1) ] , then prove that A^n=[(1+2n , -4n), (n , 1-2n) ] , where n is any positive integer.

By using binomial theorem prove that (2^(3n)-7n-1) is divisible by 49 where n is a positive integer.

Using permutation or otherwise, prove that (n^2)!/(n!)^n is an integer, where n is a positive integer. (JEE-2004]

The equatin 2x = (2n +1)pi (1 - cos x) , (where n is a positive integer)

the intersection of all the intervals having the form [1+(1)/(n),6-(2)/(n)], where n is a postive integer is

Show that the middle term in the expansion of (1+x)^(2n)i s((1. 3. 5 (2n-1)))/(n !)2^n x^n ,w h e r en is a positive integer.

Show that: 2^(4n)-2^n(7n+1) is some multiple of the square of 14, where n is a positive integer.

Prove that: n !(n+2)=n !+(n+1)!

Prove that (1+i)^n+(1-i)^n=2^((n+2)/2).cos((npi)/4) , where n is a positive integer.

CENGAGE ENGLISH-INEQUALITIES INVOLVING MEANS -Illustration
  1. about to only mathematics

    Text Solution

    |

  2. If a+b+c=1, then prove that 8/(27a b c)>{1/a-1}{1/b-1}{1/c-1}> 8.

    Text Solution

    |

  3. If y z+z x+x y=12 ,w h e r ex ,y ,z are positive values, find the grea...

    Text Solution

    |

  4. If a ,b ,c are positive, then prove that a//(b+c)+b//(c+a)+c//(a+b)geq...

    Text Solution

    |

  5. Prove that 2^n >1+nsqrt(2^(n-1)),AAn >2 where n is a positive integer.

    Text Solution

    |

  6. If S+a1+a2+a3++an ,a1 in R^+ for i=1ton , then prove that S/(S-a1)+S/...

    Text Solution

    |

  7. If a1+a2+a3+......+an=1 AA ai > 0, i=1,2,3,......,n, then find the ma...

    Text Solution

    |

  8. If a , b , c , are positive real numbers, then prove that (2004, 4M) {...

    Text Solution

    |

  9. Prove that (sec^4alpha)/(tan^2beta)+(sec^4beta)/(tan^2alpha)ge8. If ea...

    Text Solution

    |

  10. Prove that [(x^2+y^2+z^2)/(x+y+z)]^(x+y+z)> x^x y^y z^z >[(x+y+z)/3]^(...

    Text Solution

    |

  11. Prove that 1^1xx2^2xx3^3xxxxu nlt=[(2n+1)//3]n(n+1)//2,n in Ndot

    Text Solution

    |

  12. Find the greatest value of x^2 y^3, where x and y lie in the first qua...

    Text Solution

    |

  13. Find the maximum value of (7-x)^4(2+x)^5w h e nx lies between -2a n d7...

    Text Solution

    |

  14. Find the maximum value of xyz when (x)/(1)+(y^2)/(4)+(z^3)/(27)=1, whe...

    Text Solution

    |

  15. If a ,b >0 such that a^3+b^3=2, then show that a+blt=2.

    Text Solution

    |

  16. If m >1,n in N show that 1m+2m+2^(2m)+2^(3m)++2^(n m-m)> n^(i-m)(2^n-...

    Text Solution

    |

  17. Prove that in an acute angled triangle ABC , sec A+sec B +sec Cge 6.

    Text Solution

    |

  18. Prove that (b^2+c^2)/(b+c)+(c^2+a^2)/(c+a)+(a^2+b^2)/(a+b)> a+b+c

    Text Solution

    |

  19. Prove that (a^8+b^8+c^8)/(a^3b^3c^3)>1/a+1/b+1/c

    Text Solution

    |

  20. If a ,b ,a n dc are positive and a+b+c=6, show that (a+1//b)2+(b+1//c)...

    Text Solution

    |