Home
Class 12
MATHS
If a , b , c , are positive real numbers...

If `a , b , c ,` are positive real numbers, then prove that (2004, 4M) `{(1+a)(1+b)(1+c)}^7>7^7a^4b^4c^4`

Text Solution

Verified by Experts

Using A.M `ge` G.M
`((a_(1))/(2) + (a_(1))/(2) + a_(2) + a_(3) + a_(4) + …. + a_(n))/(n + 1) ge (((a_(1))/(2))^(2).a_(2).a_(3).a_(4)……..a_(n))^((1)/(n + 1))`
`implies ((1)/(n + 1))^(n + 1) ge (a_(1)^(2) a_(2) a_(3) a_(4)….a_(n))/(4)`
`implies (4)/((n + 1)^(n + 1)) ge a_(1)^(2) a_(2) a_(3) a_(4)...... a_(n)`
Hence, required maximum value is `(4)/((n + 1)^(n + 1))`
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Example 1|1 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Example 2|1 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Comprehension|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos

Similar Questions

Explore conceptually related problems

If a ,b , a n dc are distinct positive real numbers such that a+b+c=1, then prove that ((1+a)(1+b)(1+c))/((1-a)(1-b)(1-c))> 8.

If a, b, c are positive real numbers such that a + b + c = 1 , then prove that a/(b + c)+b/(c+a) + c/(a+b) >= 3/2

If a, b, c are positive real numbers, then the least value of (a+b+c)((1)/(a)+(1)/(b)+(1)/( c )) , is

If a, b, c are positive real numbers such that a+b+c=1 , then the greatest value of (1-a)(1-b)(1-c), is

If a+b+c=1 and a, b, c are positive real numbers such that (1-a)(1-b)(1-c)gelambda" abc, then "lambda =

Let a, b and c be positive real numbers. Then prove that tan^(-1) sqrt((a(a + b + c))/(bc)) + tan^(-1) sqrt((b (a + b + c))/(ca)) + tan^(-1) sqrt((c(a + b+ c))/(ab)) =' pi'

If a, b, c are distinct positive real numbers such that a+(1)/(b)=4,b+(1)/( c )=1,c+(1)/(d)=4 and d+(1)/(a)=1 , then

If a,b,c are positive real numbers such that a + b +c=18, find the maximum value of a^2b^3c^4

If a,b,c are positive real numbers and 2a+b+3c=1 , then the maximum value of a^(4)b^(2)c^(2) is equal to

If a and b are positive real numbers such that a+b =c, then the minimum value of ((4 )/(a)+ (1)/(b)) is equal to :

CENGAGE ENGLISH-INEQUALITIES INVOLVING MEANS -Illustration
  1. about to only mathematics

    Text Solution

    |

  2. If a+b+c=1, then prove that 8/(27a b c)>{1/a-1}{1/b-1}{1/c-1}> 8.

    Text Solution

    |

  3. If y z+z x+x y=12 ,w h e r ex ,y ,z are positive values, find the grea...

    Text Solution

    |

  4. If a ,b ,c are positive, then prove that a//(b+c)+b//(c+a)+c//(a+b)geq...

    Text Solution

    |

  5. Prove that 2^n >1+nsqrt(2^(n-1)),AAn >2 where n is a positive integer.

    Text Solution

    |

  6. If S+a1+a2+a3++an ,a1 in R^+ for i=1ton , then prove that S/(S-a1)+S/...

    Text Solution

    |

  7. If a1+a2+a3+......+an=1 AA ai > 0, i=1,2,3,......,n, then find the ma...

    Text Solution

    |

  8. If a , b , c , are positive real numbers, then prove that (2004, 4M) {...

    Text Solution

    |

  9. Prove that (sec^4alpha)/(tan^2beta)+(sec^4beta)/(tan^2alpha)ge8. If ea...

    Text Solution

    |

  10. Prove that [(x^2+y^2+z^2)/(x+y+z)]^(x+y+z)> x^x y^y z^z >[(x+y+z)/3]^(...

    Text Solution

    |

  11. Prove that 1^1xx2^2xx3^3xxxxu nlt=[(2n+1)//3]n(n+1)//2,n in Ndot

    Text Solution

    |

  12. Find the greatest value of x^2 y^3, where x and y lie in the first qua...

    Text Solution

    |

  13. Find the maximum value of (7-x)^4(2+x)^5w h e nx lies between -2a n d7...

    Text Solution

    |

  14. Find the maximum value of xyz when (x)/(1)+(y^2)/(4)+(z^3)/(27)=1, whe...

    Text Solution

    |

  15. If a ,b >0 such that a^3+b^3=2, then show that a+blt=2.

    Text Solution

    |

  16. If m >1,n in N show that 1m+2m+2^(2m)+2^(3m)++2^(n m-m)> n^(i-m)(2^n-...

    Text Solution

    |

  17. Prove that in an acute angled triangle ABC , sec A+sec B +sec Cge 6.

    Text Solution

    |

  18. Prove that (b^2+c^2)/(b+c)+(c^2+a^2)/(c+a)+(a^2+b^2)/(a+b)> a+b+c

    Text Solution

    |

  19. Prove that (a^8+b^8+c^8)/(a^3b^3c^3)>1/a+1/b+1/c

    Text Solution

    |

  20. If a ,b ,a n dc are positive and a+b+c=6, show that (a+1//b)2+(b+1//c)...

    Text Solution

    |