Home
Class 12
MATHS
Find the minimum value of 2^("sin" x) + ...

Find the minimum value of `2^("sin" x) + 2^("cos" x)`

Text Solution

Verified by Experts

The correct Answer is:
`2^(1 - (1)/(sqrt(2))`

Using `A.M. ge G.M`., we have
`2^(sin x)+2^(cosx) ge 2sqrt(2^sinx 2^cos x)=2sqrt(2^(sinx+cosx))`
Now we know that
`sin x +cos x ge -sqrt(2)`
`rArr 2^(sinx)+2^(cos x) ge 2sqrt(2^-sqrt(2))`
Hence, the minimum value of `2^sinx +2^cosx is 2(1(1)/(sqrt(2)))`
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Concept Application Eexercises 6.2|6 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Concept Application Eexercises 6.3|6 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Example 8|1 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos

Similar Questions

Explore conceptually related problems

Find the minimum value of 4^sin^(2x)+4^cos^(2x) .

Find the minimum value of 4sin^(2)x+4cos^(2)x .

The minimum value of 27^(cos3x)81^(sin3x) is

Find the maximum & minimum values of 27^(cos2x). 81^(sin2x)

(i) Find the maximum and minimum values of sin^(4)x + cos^(2)x and hence or otherwise find the maximum value of sin^(1000)x + cos^(2008)x . (ii) Find the maximum value of cos (cos x).

Find the maximum value of 4sin^2x+3cos^2x+sinx/2+cosx/2dot

Find the minimum value of f(x)=|x+2|+|x-2|+|x|.

Let P(x)=((1-cos2x+sin2x)/(1+cos2x+sin2x))^2+((1+cotx+cot^2x)/(1+tanx+tan^2x)), then the minimum value of P(x) equal 1 (b) 2 (c) 4 (d) 16

Find the maximum and minimum value of f(x)=sinx+1/2cos2xin[0,pi/2]dot

The maximum and minimum values of 6 sin x cos x +4cos2x are respectively