Home
Class 12
MATHS
If x,y in R^(+) such that x + y = 8, the...

If `x,y in R^(+)` such that x + y = 8, then find the minimum value of `(1 + (1)/(x)) (1 + (1)/(y))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the expression \( (1 + \frac{1}{x})(1 + \frac{1}{y}) \) given that \( x + y = 8 \) and \( x, y \in \mathbb{R}^{+} \), we can follow these steps: ### Step 1: Rewrite the Expression We start with the expression: \[ (1 + \frac{1}{x})(1 + \frac{1}{y}) \] Expanding this, we have: \[ = 1 + \frac{1}{x} + \frac{1}{y} + \frac{1}{xy} \] ### Step 2: Substitute \( y \) Since we know \( x + y = 8 \), we can express \( y \) in terms of \( x \): \[ y = 8 - x \] Now, substituting \( y \) into the expression gives: \[ = 1 + \frac{1}{x} + \frac{1}{8 - x} + \frac{1}{x(8 - x)} \] ### Step 3: Combine Terms Combining the terms, we get: \[ = 1 + \frac{8 - x + x}{x(8 - x)} + \frac{1}{x(8 - x)} = 1 + \frac{8}{x(8 - x)} \] ### Step 4: Simplify Further Thus, we can rewrite our expression as: \[ = 1 + \frac{8}{x(8 - x)} \] ### Step 5: Find the Maximum of \( xy \) To minimize \( \frac{8}{xy} \), we need to maximize \( xy \). Using the AM-GM inequality: \[ \frac{x + y}{2} \geq \sqrt{xy} \] Substituting \( x + y = 8 \): \[ \frac{8}{2} \geq \sqrt{xy} \implies 4 \geq \sqrt{xy} \implies 16 \geq xy \] The maximum value of \( xy \) occurs when \( x = y = 4 \). ### Step 6: Substitute Back to Find Minimum Value Substituting \( xy = 16 \) back into our expression: \[ = 1 + \frac{8}{16} = 1 + \frac{1}{2} = \frac{3}{2} \] ### Step 7: Final Expression Thus, the minimum value of \( (1 + \frac{1}{x})(1 + \frac{1}{y}) \) is: \[ \frac{3}{2} \] ### Conclusion The minimum value of \( (1 + \frac{1}{x})(1 + \frac{1}{y}) \) given \( x + y = 8 \) is \( \frac{3}{2} \). ---

To find the minimum value of the expression \( (1 + \frac{1}{x})(1 + \frac{1}{y}) \) given that \( x + y = 8 \) and \( x, y \in \mathbb{R}^{+} \), we can follow these steps: ### Step 1: Rewrite the Expression We start with the expression: \[ (1 + \frac{1}{x})(1 + \frac{1}{y}) \] Expanding this, we have: ...
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Concept Application Eexercises 6.2|6 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Concept Application Eexercises 6.3|6 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Example 8|1 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos

Similar Questions

Explore conceptually related problems

If x ,y in R and x^2+y^2+x y=1, then find the minimum value of x^3y+x y^3+4.

The minimum value of y=5x^(2)-2x+1 is

If x gt y gt 0 , then find the value of tan^(-1).(x)/(y) + tan^(-1) [(x + y)/(x -y)]

If sec^(-1) x = cosec^(-1) y , then find the value of cos^(-1).(1)/(x) + cos^(-1).(1)/(y)

If x,y,z are positive real number, such that x+y+z=1 , if the minimum value of (1+1/x)(1+1/y)(1+1/z) is K^(2) , then |K| is ……….

If x<0,\ y<0 such that x y=1 , then write the value of tan^(-1)x+tan^(-1)y .

If x - (1)/(x) = y , x ne 0 , find the value of (x- (1)/ (x) - 2y ) ^(3)

Find the value of tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y))

Find the value of tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y))

Find the value of tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y))