Home
Class 12
MATHS
If x ,y in R^+ satisfying x+y=3, then t...

If `x ,y in R^+` satisfying `x+y=3,` then the maximum value of `x^2y` is.

Text Solution

Verified by Experts

The correct Answer is:
4

We have `(2((x)/(y))+y)/(3)ge(((x)/(2))^2y)^(1//3)`
`rArr ((3)/(3))^3ge (x^2y)/(4)`
`x^(2) 4`
Therefore, maximum value of `x^2y` is 4.
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Jee Advanced (Single|1 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Linked comprehension type|6 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos

Similar Questions

Explore conceptually related problems

If x,y in R and satisfy (x+5)^2+(y-12)^2=14^2 then the minimum value of x^2+y^2 is

If x , y in R satisfies (x+5)^2+(y-12)^2=(14)^2, then the minimum value of sqrt(x^2+y^2) is__________

If x , y in R satisfies (x+5)^2+(y-12)^2=(14)^2, then the minimum value of sqrt(x^2=y^2) is__________

If x ,y in R and x^2+y^2+x y=1, then find the minimum value of x^3y+x y^3+4.

If real numbers x and y satisfy (x+5)^(2)+(y-12)^(2)=196 , then the maximum value of (x^(2)+y^(2))^((1)/(3)) is

If x^2+y^2=4 then find the maximum value of (x^3+y^3)/(x+y)

If x + y=4 and x >=0, y>= 0 find the maximum value of x^3y .

If (x,y) lies on the ellipse x^(2)+2y^(3) = 2 , then maximum value of x^(2)+y^(2)+ sqrt(2)xy - 1 is

If (log)_(10)(x^3+y^3)-(log)_(10)(x^2+y^2-x y)lt=2, and x ,y are positive real number, then find the maximum value of x ydot

If x,y in R satisfy the equation x^2 + y^2 - 4x-2y + 5 = 0, then the value of the expression [(sqrtx-sqrty)^2+4sqrt(xy)]/((x+sqrt(xy)) is