Home
Class 12
MATHS
Let a,b,c,d and e be positive real numbe...

Let a,b,c,d and e be positive real numbers such that `a+b+c+d+e=15` and `ab^2c^3d^4e^5=(120)^3xx50`. Then the value of `a^2+b^2+c^2+d^2+e^2` is ___________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a^2 + b^2 + c^2 + d^2 + e^2 \) given the conditions: 1. \( a + b + c + d + e = 15 \) 2. \( ab^2c^3d^4e^5 = (120)^3 \times 50 \) ### Step 1: Set up the equations We know that: - \( a + b + c + d + e = 15 \) - \( ab^2c^3d^4e^5 = 120^3 \times 50 \) ### Step 2: Calculate \( 120^3 \times 50 \) First, we simplify \( 120^3 \times 50 \): \[ 120 = 2^3 \times 3 \times 5 \] Thus, \[ 120^3 = (2^3 \times 3 \times 5)^3 = 2^9 \times 3^3 \times 5^3 \] Now, multiplying by \( 50 \): \[ 50 = 2 \times 5^2 \] So, \[ 120^3 \times 50 = 2^9 \times 3^3 \times 5^3 \times 2 \times 5^2 = 2^{10} \times 3^3 \times 5^5 \] ### Step 3: Apply the AM-GM inequality Using the AM-GM inequality: \[ \frac{a + 2b + 3c + 4d + 5e}{1 + 2 + 3 + 4 + 5} \geq \sqrt[15]{ab^2c^3d^4e^5} \] The left side simplifies to: \[ \frac{a + 2b + 3c + 4d + 5e}{15} \] The right side becomes: \[ \sqrt[15]{120^3 \times 50} = \sqrt[15]{2^{10} \times 3^3 \times 5^5} \] ### Step 4: Find the equality condition The equality in AM-GM holds when: \[ a = \frac{1}{15} \cdot 1, \quad b = \frac{2}{15} \cdot 2, \quad c = \frac{3}{15} \cdot 3, \quad d = \frac{4}{15} \cdot 4, \quad e = \frac{5}{15} \cdot 5 \] Let \( \lambda \) be a common factor: \[ a = \lambda, \quad b = 2\lambda, \quad c = 3\lambda, \quad d = 4\lambda, \quad e = 5\lambda \] Then: \[ \lambda + 2\lambda + 3\lambda + 4\lambda + 5\lambda = 15\lambda = 15 \implies \lambda = 1 \] Thus: \[ a = 1, \quad b = 2, \quad c = 3, \quad d = 4, \quad e = 5 \] ### Step 5: Calculate \( a^2 + b^2 + c^2 + d^2 + e^2 \) Now, we compute: \[ a^2 + b^2 + c^2 + d^2 + e^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 \] Calculating each term: \[ 1^2 = 1, \quad 2^2 = 4, \quad 3^2 = 9, \quad 4^2 = 16, \quad 5^2 = 25 \] Adding them together: \[ 1 + 4 + 9 + 16 + 25 = 55 \] ### Final Answer Thus, the value of \( a^2 + b^2 + c^2 + d^2 + e^2 \) is \( \boxed{55} \).

To solve the problem, we need to find the value of \( a^2 + b^2 + c^2 + d^2 + e^2 \) given the conditions: 1. \( a + b + c + d + e = 15 \) 2. \( ab^2c^3d^4e^5 = (120)^3 \times 50 \) ### Step 1: Set up the equations We know that: - \( a + b + c + d + e = 15 \) ...
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Jee Advanced (Single|1 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Linked comprehension type|6 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos

Similar Questions

Explore conceptually related problems

If a,b,c,d ,e are +ve real numbers such that a+b+c+d+e=8 and a^2 + b^2 +c^2 + d^2 +e^2 = 16 , then the range of 'e' is

Let a,b,c , d ar positive real number such that a/b ne c/d, then the roots of the equation: (a^(2) +b^(2)) x ^(2) +2x (ac+ bd) + (c^(2) +d^(2))=0 are :

If a,b,c,d are positive real numbers such that (a)/(3) = (a+b)/(4)= (a+b+c)/(5) = (a+b+c+d)/(6) , then (a)/(b+2c+3d) is:-

Let a,b,c,d be real numbers such that |a-b|=2, |b-c|=3, |c-d|=4 Then the sum of all possible values of |a-d|=

If real numbers a, b, c, d, e satisfy a+1=b + 2 = c+ 3 = d + 4 = e + 5 = a + b + c + d + e + 3 then find the value of a^2 + b^2 + c^2 + d^2 + e^2

if a,b,c,d,e and f are six real numbers such that a+b+c=d+e+f a^2+b^2+c^2=d^2+e^2+f^2 and a^3+b^3+c^3=d^3+e^3+f^3 , prove by mathematical induction that a^n+b^n+c^n=d^n+e^n+f^n forall n in N .

If A B C and D E F are similar triangles such that 2\ A B=D E and B C=8c m , then E F=

Let a,b,c,d, e ar non-zero and distinct positive real numbers. If a,b, c are In a,b,c are in A.B, b,c, dare in G.P. and c,d e are in H.P, the a,c,e are in :

Let a , b , c , d , e ,f in R such that a d+b e+cf=sqrt((a^2+b^2+c^2)(d^2+e^2+f^2)) Use vector to prove that (a+b+c)/(sqrt(b^2+b^2+c^2))=(d+e+f)/(sqrt(d^2+e^2+f^2))

If a,b,c,d,e, f are A. M's between 2 and 12 , then find a + b + c +d + e +f.