Home
Class 12
MATHS
The minimum value of the sum of real num...

The minimum value of the sum of real number `a^(-5),a^(-4),3a^(-3),1,a^8,a n da^(10)w i t ha >0` is

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the sum \( S = a^{-5} + a^{-4} + 3a^{-3} + 1 + a^{-8} + a^{-10} \) for \( a > 0 \), we can apply the Arithmetic Mean-Geometric Mean (AM-GM) inequality. ### Step-by-Step Solution: 1. **Rewrite the Expression**: The given expression can be rewritten as: \[ S = a^{-5} + a^{-4} + a^{-3} + a^{-3} + a^{-3} + 1 + a^{-8} + a^{-10} \] 2. **Count the Terms**: We have a total of 8 terms in the expression: \[ a^{-5}, a^{-4}, a^{-3}, a^{-3}, a^{-3}, 1, a^{-8}, a^{-10} \] 3. **Apply the AM-GM Inequality**: According to the AM-GM inequality, the arithmetic mean of non-negative numbers is greater than or equal to their geometric mean. Thus, we can write: \[ \frac{a^{-5} + a^{-4} + a^{-3} + a^{-3} + a^{-3} + 1 + a^{-8} + a^{-10}}{8} \geq \sqrt[8]{a^{-5} \cdot a^{-4} \cdot a^{-3} \cdot a^{-3} \cdot a^{-3} \cdot 1 \cdot a^{-8} \cdot a^{-10}} \] 4. **Calculate the Geometric Mean**: The product of the terms in the geometric mean is: \[ a^{-5} \cdot a^{-4} \cdot a^{-3} \cdot a^{-3} \cdot a^{-3} \cdot 1 \cdot a^{-8} \cdot a^{-10} = a^{-5 - 4 - 3 - 3 - 3 - 8 - 10} = a^{-38} \] Therefore, the geometric mean is: \[ \sqrt[8]{a^{-38}} = a^{-\frac{38}{8}} = a^{-\frac{19}{4}} \] 5. **Set Up the Inequality**: Now substituting back into the AM-GM inequality gives: \[ \frac{S}{8} \geq a^{-\frac{19}{4}} \] 6. **Find the Minimum Value**: To minimize \( S \), we need to maximize \( a^{\frac{19}{4}} \). The minimum occurs when all terms are equal, which leads to: \[ S \geq 8 \cdot a^{-\frac{19}{4}} \] Setting \( a^{-\frac{19}{4}} = 1 \) gives \( a^{\frac{19}{4}} = 1 \), or \( a = 1 \). 7. **Calculate \( S \) at \( a = 1 \)**: Substituting \( a = 1 \) into \( S \): \[ S = 1^{-5} + 1^{-4} + 3 \cdot 1^{-3} + 1 + 1^{-8} + 1^{-10} = 1 + 1 + 3 + 1 + 1 + 1 = 8 \] 8. **Conclusion**: Therefore, the minimum value of \( S \) is: \[ \boxed{8} \]

To find the minimum value of the sum \( S = a^{-5} + a^{-4} + 3a^{-3} + 1 + a^{-8} + a^{-10} \) for \( a > 0 \), we can apply the Arithmetic Mean-Geometric Mean (AM-GM) inequality. ### Step-by-Step Solution: 1. **Rewrite the Expression**: The given expression can be rewritten as: \[ S = a^{-5} + a^{-4} + a^{-3} + a^{-3} + a^{-3} + 1 + a^{-8} + a^{-10} ...
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Jee Advanced (Single|1 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Linked comprehension type|6 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos

Similar Questions

Explore conceptually related problems

The minimum value of the sum of real number a^(-5),a^(-4),3a^(-3),1,a^8,an d a^(10) with a >0 is

The minimum value of the sum of real number a^-5,a^-4,3a^-3,1,a^8 and a^10 with a > 0 is

The sum of two non-zero numbers is 8, the minimum value of the sum of their reciprocals is 1/4 (b) 1/2 (c) 1/8 (d) none of these

If a,b,c are non-zero real numbers, then the minimum value of the expression ((a^(8)+4a^(4)+1)(b^(4)+3b^(2)+1)(c^(2)+2c+2))/(a^(4)b^(2)) equals

The value of the determinant |(1,omega^(3),omega^(5)),(omega^(3),1,omega^(4)),(omega^(5),omega^(4),1)| , where omega is an imaginary cube root of unity, is

Find the sum of the following numbers 2/3+5/3i ,-2/3i and -5/4-i

The set of all real numbers a such that a^2+2a ,2a+3,a n da^2+3a+8 are the sides of a triangle is_____

If cos(x+pi/3)+cos x=a has real solutions, then number of integral values of a are 3 sum of number of integral values of a is 0 when a=1 , number of solutions for x in [0,2pi] are 3 when a=1, number of solutions for x in [0,2pi] are 2

What is the sum of the complex numbers 2 + 3i and 4 + 8i, where i = sqrt(-1) ?

If a_i , i= 1,2,3,4 be four real members of same sign, then the minimum value of sum (a_i/a_j) , i , j in {1,2,3,4} , i != j is : (a) 6 (b) 8 (c) 12 (d) 24