Home
Class 12
MATHS
If a function 'f' satisfies the relation...

If a function 'f' satisfies the relation `f(x)f^('')(x)-f(x)f^(')(x) -f^(')(x)^(2)=0 AA x in R` and `f(0)=1=f^(')(0)`. Then find `f(x)`.

Text Solution

Verified by Experts

The correct Answer is:
`f(x) = e^(e^(x)-1)`

We have `f(x)f^('')(x)-f^(')(x)^(2)=0`
Divide by `f(x)f^(')(x)`, we get
`(f^('')(x))/(f^(')(x))-1=(f^(')(x))/(f(x))`
Integrating both sides, we get ,
`log_(e)f^(')(x)-x=log_(e)f(x)+C`
Since, `f(0)=1=f^(')(0),C=0`
`therefore log_(e)f^(')(x)-log_(e)f(x)=x`
`rArr (log_(e)) f^(')(x)/(f(x))=e^(x)`
Integrating both sides, we get
`log_(e)f(x)=e^(x)+C`
Using `f(0)=1`, we have `C=-1`
`therefore f(x)=e^(e^(x))-1`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISES 10.4|6 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISES 10.5|7 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISES 10.2|6 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Archives|14 Videos

Similar Questions

Explore conceptually related problems

If a function satisfies the relation f(x) f''(x)-f(x)f'(x)=(f'(x))^(2) AA x in R and f(0)=f'(0)=1, then The value of lim_(x to -oo) f(x) is

If a function satisfies the relation f(x) f''(x)-f(x)f'(x)=(f'(x))^(2) AA x in R and f(0)=f'(0)=1, then Number of roots of the equation f(x)=e^(x) is

The function f(x) satisfying the equation f^2 (x) + 4 f'(x) f(x) + (f'(x))^2 = 0

If the function / satisfies the relation f(x+y)+f(x-y)=2f(x),f(y)AAx , y in R and f(0)!=0 , then

A function f(x) satisfies the relation f(x+y) = f(x) + f(y) + xy(x+y), AA x, y in R . If f'(0) = - 1, then

If function f satisfies the relation f(x)*f^(prime)(-x)=f(-x)*f^(prime)(x) for all x ,and f(0)=3, and if f(3)=3, then the value of f(-3) is ______________

If function f satisfies the relation f(x)*f^(prime)(-x)=f(-x)*f^(prime)(x)for a l lx ,a n df(0)=3,a n dif f(3)=3, then the value of f(-3) is ______________

A Function f(x) satisfies the relation f(x)=e^x+int_0^1e^xf(t)dtdot Then (a) f(0) 0

A function f : R→R satisfies the equation f(x)f(y) - f(xy) = x + y ∀ x, y ∈ R and f (1)>0 , then

Let f(x+y)+f(x-y)=2f(x)f(y) AA x,y in R and f(0)=k , then