Home
Class 12
MATHS
Solve (dy)/(dx)+ycotx=sinx...

Solve `(dy)/(dx)+ycotx=sinx`

Text Solution

Verified by Experts

The correct Answer is:
`ysinx=1/4[2x-sin2x]+c`

Given equation is linear and
`P=cotx, Q=sinx`
`therefore I.F. = e^(int(cotxdx))=e^(logsinx)=sinx`
Hence, the solution is
`ysinx=int(sinxsinxdx+c)`
`=1/2int(1-cos2x)dx+c`
`=1/2[x-1/2sin2x]+c`
`therefore ysinx=1/y[2x-sin2x]+c`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISES 10.7|5 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISES 10.8|7 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISES 10.5|7 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Archives|14 Videos

Similar Questions

Explore conceptually related problems

Solve: (dy)/(dx)+2ycotx=3x^2cosec^2x

Solve: (dy)/(dx)+y=cos x-sinx

Solve the initial value problem: (dy)/(dx)-3ycotx=sin2x ; y=2\ w h e n\ x=\ pi/2 .

Solve the equation (dy)/(dx)+ycotx=sinx

Solve: (dy)/(dx)=secy

Solve the following initial value problem: (dy)/(dx)+ycotx=2cosx ,\ y\ (pi/2)=0

Solve the following initial value problem: (dy)/(dx)+ycotx=2cosx ,\ y\ (pi/2)=0

Solve the following initial value problem: (dy)/(dx)+\ ycotx=4x\ cosec x , \ y(pi/2)=0

Solve the differential equation (dy)/(dx)-3ycotx=sin2x given y=2 when x=pi/2dot

Solve the differential equation : (dy)/(dx) -3ycotx = sin 2x , given y=2, when x=pi/2