Home
Class 12
MATHS
(dy)/(dx)=(x^(3)-2xtan^(-1)y)(1+y^(2))...

`(dy)/(dx)=(x^(3)-2xtan^(-1)y)(1+y^(2))`

Text Solution

Verified by Experts

The correct Answer is:
`2tan^(-1)y=x^(2)-1+2Ce^(-x^(2))`

`1/(1+y^(2)).(dy)/(dx)+2x(tan^(-1)y)=x^(3)`………..(1)
Put `tan^(-1)y=z`
`therefore 1/(1+y^(2)).(dy)/(dx)=(dz)/(dx)`
Thus, (1) reduces to `(dz)/(dx)+(2x)z=x^(3)`, which is linear differential equation
I.F. `=e^(int2xdx)=e^(x^(2))`
Thus, solution is `z.e^(x^(2))=1/2int2e^(x^(2))-e^(x^(2))+2C`
or `2tan^(-1)y=x^(2)-1+2Ce^(-x^(2))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISES 10.8|7 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISES 10.9|5 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISES 10.6|7 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Archives|14 Videos

Similar Questions

Explore conceptually related problems

The solution of (dy)/(dx)=((x-1)^2+(y-2)^2tan^(- 1)((y-2)/(x-1)))/((x y-2x-y+2)tan^(- 1)((y-2)/(x-1))) is equal to

(dy)/(dx)=(sqrt(x^(2)-1))/(sqrt(y^(2)-1))

The family of curves represented by (dy)/(dx)=(x^(2)+x+1)/(y^(2)+y+1) and the family represented by (dy)/(dx)+(y^(2)+y+1)/(x^(2)+x+1)=0

If x(dy)/(dx)=x^(2)+y-2, y(1)=1 , then y(2) equals ………………..

Let y=f (x) and x/y (dy)/(dx) =(3x ^(2)-y)/(2y-x^(2)),f(1)=1 then the possible value of 1/3 f(3) equals :

Find the order and degree of the following differential equations. i) (dy)/(dx)+y=1/((dy)/(dx)) , ii) e^(e^(3)y)/(dx^(3))-x(d^(2)y)/(dx^(2))+y=0 , iii) sin^(-1)(dy)/(dx)=x+y , iv) log_(e)(dy)/(dx)=ax+by v) y(d^(2)y)/(dx^(2))+x((dy)/(dx))^(2)-4y(dy)/(dx)=0

STATEMENT -1 : for the function y= f(x), f(x) ,({1+((dy)/dx)^(2)}^(3/2))/((d^(2)y)/(dx^(2))) = - ({1+ (dx/dy)^(2)}^(3/2))/((d^(2)x)/(dy^(2))) STATEMENT -2 : (dy)/(dx) = (1/(dx))/dy and (d^(2)y)/(dx^(2)) = d/dx (dy/(dx))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))