Home
Class 12
MATHS
if the differential equation of a curve,...

if the differential equation of a curve, passing through `(0,-(pi)/(4))` and `(t,0)` is `cosy((dy)/(dx)+e^(-x))+siny(e^(-x)-(dy)/(dx))=e^(e^(-x))` then find the value of `t.e^(e^(-1))`

Text Solution

Verified by Experts

The correct Answer is:
1

We have `cosy((dy)/(dx)+e^(-x))+siny(e^(-x)-(dy)/(dx))=e^(e^(-x))`
`rArr (cosy-siny)(dy)/(dx)+(cosy+siny)e^(-x)=e^(e^(-x))`……..(1)
Let `cosy+siny=u`
`therefore` Equation (1) reduces to
`rArr (du)/(dx)+e^(-x)u=e^(e^(-x))`,
Which is linear differential equation whose solution is
`ue^(-e^-(x))=x`or `(cosy+siny)e^(-e^(-x))=x`
Putting (t,0), (putting (t,0))
`rArr e^(-e^(-t))=t`
`rArr t.e^(e^(-t))=1`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Archives|14 Videos

Similar Questions

Explore conceptually related problems

(ii) e^(y)((dy)/(dx)+1)=e^(x)

Solve: (e^x+e^(-x))dy/(dx)=(e^x-e^(-x))

Find (dy)/(dx) of e^x(1+x)

Solve the differential equation: (dy)/(dx)+\ 4x=e^x

int(e^(2x)+2e^x-e^(-x)-1)e^(e^x+e^(-x))dx=g(x)e^(e^x+e^(-x)) , then find g(0) .

Find the equation of the curve passing through the point (0,pi/4) whose differential equation is sinx cosy dx + cosx siny dy = 0 .

Solve the differential equation: (dy)/(dx)+1=e^(x+y)

Solve the differential equation: (dy)/(dx)+y=e^(-2x)

Solve the differential equation: (dy)/(dx)+y=e^(-2x)

If siny+2x=e^x then find dy/dx