Home
Class 12
MATHS
If (2+sinx)(dy)/(dx)+(y+1)cosx=0 and y(0...

If `(2+sinx)(dy)/(dx)+(y+1)cosx=0` and `y(0)=1`, then `y((pi)/(2))` is equal to

A

`4/3`

B

`1/3`

C

`-2/3`

D

`-1/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \((2 + \sin x) \frac{dy}{dx} + (y + 1) \cos x = 0\) with the initial condition \(y(0) = 1\), we will follow these steps: ### Step 1: Rewrite the Differential Equation We start with the given equation: \[ (2 + \sin x) \frac{dy}{dx} + (y + 1) \cos x = 0 \] Rearranging gives: \[ \frac{dy}{dx} = -\frac{(y + 1) \cos x}{(2 + \sin x)} \] ### Step 2: Separate Variables We can separate the variables \(y\) and \(x\): \[ \frac{dy}{y + 1} = -\frac{\cos x}{2 + \sin x} dx \] ### Step 3: Integrate Both Sides Now we integrate both sides: \[ \int \frac{dy}{y + 1} = -\int \frac{\cos x}{2 + \sin x} dx \] The left side integrates to: \[ \ln |y + 1| \] For the right side, we can use substitution. Let \(u = 2 + \sin x\), then \(du = \cos x \, dx\). The integral becomes: \[ -\int \frac{1}{u} du = -\ln |u| = -\ln |2 + \sin x| \] Thus, we have: \[ \ln |y + 1| = -\ln |2 + \sin x| + C \] ### Step 4: Exponentiate to Solve for \(y\) Exponentiating both sides gives: \[ |y + 1| = \frac{C}{2 + \sin x} \] Since \(y + 1\) can be positive or negative, we can drop the absolute value and write: \[ y + 1 = \frac{C}{2 + \sin x} \] Thus: \[ y = \frac{C}{2 + \sin x} - 1 \] ### Step 5: Use Initial Condition to Find \(C\) We use the initial condition \(y(0) = 1\): \[ 1 = \frac{C}{2 + \sin(0)} - 1 \] This simplifies to: \[ 1 = \frac{C}{2} - 1 \] Adding 1 to both sides: \[ 2 = \frac{C}{2} \] Multiplying by 2 gives: \[ C = 4 \] ### Step 6: Substitute \(C\) Back into the Equation Now substituting \(C\) back into the equation for \(y\): \[ y = \frac{4}{2 + \sin x} - 1 \] ### Step 7: Find \(y\) at \(x = \frac{\pi}{2}\) Now we need to find \(y\left(\frac{\pi}{2}\right)\): \[ y\left(\frac{\pi}{2}\right) = \frac{4}{2 + \sin\left(\frac{\pi}{2}\right)} - 1 \] Since \(\sin\left(\frac{\pi}{2}\right) = 1\): \[ y\left(\frac{\pi}{2}\right) = \frac{4}{2 + 1} - 1 = \frac{4}{3} - 1 = \frac{4}{3} - \frac{3}{3} = \frac{1}{3} \] ### Final Answer Thus, the value of \(y\left(\frac{\pi}{2}\right)\) is: \[ \boxed{\frac{1}{3}} \]

To solve the differential equation \((2 + \sin x) \frac{dy}{dx} + (y + 1) \cos x = 0\) with the initial condition \(y(0) = 1\), we will follow these steps: ### Step 1: Rewrite the Differential Equation We start with the given equation: \[ (2 + \sin x) \frac{dy}{dx} + (y + 1) \cos x = 0 \] Rearranging gives: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Jee advanced|3 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answerts type|5 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Numerical value type|17 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Archives|14 Videos

Similar Questions

Explore conceptually related problems

If ((2+cosx)/(3+y))(dy)/(dx)+sinx=0 and y(0)=1 , then y((pi)/(3)) is equal to

If y=y(x) and (2+sinx)/(y+1)((dy)/(dx))=-cosx ,y(0)=1, then y(pi/2)=

If y=y(x) and (2+sinx)/(y+1)((dy)/(dx))=-cosx ,y(0)=1, then y(pi/2) equals

Let y=g(x) be the solution of the differential equation sinx ((dy)/(dx))+y cos x=4x, x in (0,pi) If y(pi/2)=0 , then y(pi/6) is equal to

sinx dy/dx + 3y = cosx

If y= y(x) ( 2 _ cos x ) /( y+1) (( dy )/(dx)) =- sin x, y (0) =1 then y((pi)/(2)) equal ____.

ysinx dy/dx=(sinx-y^2)cosx

If y=y(x) and ((2+sinx)/(y+1))dy/dx=-cosx, y(0)=1 , then y(pi/2) equals (A) 1/3 (B) 2/3 (C) -1/3 (D) 1

If y=log_(cosx)sinx, then (dy)/(dx) is equal to

If y = sqrt(sinx+y) , then (dy)/(dx) is equal to