Home
Class 12
MATHS
If y=y(x) satisfies the differential equ...

If `y=y(x)` satisfies the differential equation `8sqrt(x)(sqrt(9+sqrt(x)))dy=(sqrt(4+sqrt(9+sqrt(x))))^(-1)dx ,x >0a n dy(0)=sqrt(7,)` then `y(256)=` 16 (b) 80 (c) 3 (d) 9

A

3

B

9

C

16

D

80

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation given in the problem, we will follow these steps: ### Step 1: Rewrite the differential equation The given differential equation is: \[ 8\sqrt{x} \sqrt{9 + \sqrt{x}} \, dy = \left(\sqrt{4 + \sqrt{9 + \sqrt{x}}}\right)^{-1} \, dx \] We can rearrange this to isolate \(dy\): \[ dy = \frac{dx}{8\sqrt{x} \sqrt{9 + \sqrt{x}} \sqrt{4 + \sqrt{9 + \sqrt{x}}}} \] ### Step 2: Substitution Let’s make a substitution to simplify the expression. Set: \[ T = 4 + \sqrt{9 + \sqrt{x}} \] Then differentiate \(T\) with respect to \(x\): \[ \frac{dT}{dx} = \frac{1}{2\sqrt{9 + \sqrt{x}}} \cdot \frac{1}{2\sqrt{x}} = \frac{1}{4\sqrt{x}\sqrt{9 + \sqrt{x}}} \] Thus, we can express \(dx\) in terms of \(dT\): \[ dx = 4\sqrt{x}\sqrt{9 + \sqrt{x}} \, dT \] ### Step 3: Substitute back into the equation Substituting \(dx\) into our expression for \(dy\): \[ dy = \frac{4\sqrt{x}\sqrt{9 + \sqrt{x}} \, dT}{8\sqrt{x}\sqrt{9 + \sqrt{x}} \sqrt{4 + \sqrt{9 + \sqrt{x}}}} = \frac{1}{2\sqrt{T}} \, dT \] ### Step 4: Integrate both sides Now we can integrate both sides: \[ \int dy = \int \frac{1}{2\sqrt{T}} \, dT \] This gives: \[ y = \sqrt{T} + C \] ### Step 5: Substitute back for \(T\) Substituting back for \(T\): \[ y = \sqrt{4 + \sqrt{9 + \sqrt{x}}} + C \] ### Step 6: Use the initial condition to find \(C\) We know from the problem that \(y(0) = \sqrt{7}\). We need to find \(C\): \[ \sqrt{7} = \sqrt{4 + \sqrt{9 + \sqrt{0}}} + C \] This simplifies to: \[ \sqrt{7} = \sqrt{4 + 3} + C \implies \sqrt{7} = \sqrt{7} + C \] Thus, \(C = 0\). ### Step 7: Final expression for \(y\) So, we have: \[ y = \sqrt{4 + \sqrt{9 + \sqrt{x}}} \] ### Step 8: Calculate \(y(256)\) Now we need to find \(y(256)\): \[ y(256) = \sqrt{4 + \sqrt{9 + \sqrt{256}}} \] Calculating step by step: \[ \sqrt{256} = 16 \implies y(256) = \sqrt{4 + \sqrt{9 + 16}} = \sqrt{4 + \sqrt{25}} = \sqrt{4 + 5} = \sqrt{9} = 3 \] ### Final Answer Thus, \(y(256) = 3\).

To solve the differential equation given in the problem, we will follow these steps: ### Step 1: Rewrite the differential equation The given differential equation is: \[ 8\sqrt{x} \sqrt{9 + \sqrt{x}} \, dy = \left(\sqrt{4 + \sqrt{9 + \sqrt{x}}}\right)^{-1} \, dx \] We can rearrange this to isolate \(dy\): ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answerts type|5 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|37 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Archives|12 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Archives|14 Videos

Similar Questions

Explore conceptually related problems

The equation sqrt(4x+9)-sqrt(11x+1)=sqrt(7x+4) has

Solve the differential equation [(e^(-2sqrt(x)))/(sqrt(x))-y/(sqrt(x))](dx)/(dy)=1(x!=0)

find the solution of differential equation (dy)/(dx)=(sqrt(y))/(sqrt(x))

Solve the following differential equation: [(e^(-2\ sqrt(x)))/(sqrt(x))-y/(sqrt(x))](dx)/(dy)=1,\ x\ !=0

Find the solution of the differential equation x\ sqrt(1+y^2)dx+y\ sqrt(1+x^2)dy=0.

int_(0)^(9)sqrt(x)/(sqrt(x)+sqrt(9-x))dx=(9)/(2)

Let a solution y = y(x) of the differential equation xsqrt(x^2-1) dy - y sqrt(y^2-1) dx=0 , satisfy y(2)= 2/sqrt 3

Differentiate (sqrt(a)+sqrt(x))/(sqrt(a)-sqrt(x)) with respect to 'x'.

Solve the following differential equation: x\ sqrt(1-y^2)dx+y\ sqrt(1-x^2)\ dy=0

{:(sqrt(5)x - sqrt(7)y = 0),(sqrt(7)x - sqrt(3)y = 0):}