Home
Class 12
MATHS
If phi(x)=1/(1+e^(-x)) S=phi(5) +phi(4)...

If `phi(x)=1/(1+e^(-x))` `S=phi(5) +phi(4) +phi(3) + ..+phi(-3) + phi (-4) + phi(-5)` then the value of S is

A

5

B

`11//2`

C

6

D

`13//2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the sum \( S = \phi(5) + \phi(4) + \phi(3) + \phi(2) + \phi(1) + \phi(0) + \phi(-1) + \phi(-2) + \phi(-3) + \phi(-4) + \phi(-5) \) where \( \phi(x) = \frac{1}{1 + e^{-x}} \). ### Step-by-Step Solution: 1. **Understanding the Function**: We start with the function \( \phi(x) = \frac{1}{1 + e^{-x}} \). We can also find \( \phi(-x) \): \[ \phi(-x) = \frac{1}{1 + e^{x}} \] 2. **Finding the Relationship**: We can add \( \phi(x) \) and \( \phi(-x) \): \[ \phi(x) + \phi(-x) = \frac{1}{1 + e^{-x}} + \frac{1}{1 + e^{x}} \] To combine these fractions, we find a common denominator: \[ = \frac{(1 + e^{x}) + (1 + e^{-x})}{(1 + e^{-x})(1 + e^{x})} \] Simplifying the numerator: \[ = \frac{2 + e^{x} + e^{-x}}{(1 + e^{-x})(1 + e^{x})} \] Noticing that \( e^{x} + e^{-x} = 2\cosh(x) \), we can simplify further, but we only need to know that: \[ \phi(x) + \phi(-x) = 1 \] 3. **Calculating \( S \)**: Now, we can pair the terms in \( S \): \[ S = \phi(5) + \phi(-5) + \phi(4) + \phi(-4) + \phi(3) + \phi(-3) + \phi(2) + \phi(-2) + \phi(1) + \phi(-1) + \phi(0) \] Using the relationship \( \phi(x) + \phi(-x) = 1 \): - \( \phi(5) + \phi(-5) = 1 \) - \( \phi(4) + \phi(-4) = 1 \) - \( \phi(3) + \phi(-3) = 1 \) - \( \phi(2) + \phi(-2) = 1 \) - \( \phi(1) + \phi(-1) = 1 \) - \( \phi(0) = \frac{1}{1 + 1} = \frac{1}{2} \) Therefore, we have: \[ S = 5 \cdot 1 + \frac{1}{2} = 5 + \frac{1}{2} = \frac{10}{2} + \frac{1}{2} = \frac{11}{2} \] 4. **Final Result**: Thus, the value of \( S \) is: \[ S = \frac{11}{2} \]

To solve the problem, we need to evaluate the sum \( S = \phi(5) + \phi(4) + \phi(3) + \phi(2) + \phi(1) + \phi(0) + \phi(-1) + \phi(-2) + \phi(-3) + \phi(-4) + \phi(-5) \) where \( \phi(x) = \frac{1}{1 + e^{-x}} \). ### Step-by-Step Solution: 1. **Understanding the Function**: We start with the function \( \phi(x) = \frac{1}{1 + e^{-x}} \). We can also find \( \phi(-x) \): \[ \phi(-x) = \frac{1}{1 + e^{x}} ...
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|9 Videos
  • FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|7 Videos
  • EQUATION OF PLANE AND ITS APPLICATIONS -II

    CENGAGE ENGLISH|Exercise DPP 3.4|14 Videos
  • GETTING STARTED WITH GRAPHS

    CENGAGE ENGLISH|Exercise Exercises 1.18|1 Videos

Similar Questions

Explore conceptually related problems

If phi (x)=phi '(x) and phi(1)=2 , then phi(3) equals

if A ={phi ,{phi}}, then the power set of A is

If A - B =phi phi and B-A = phi then what can we conclude ?

f^(prime)(x)=phi(x) and phi^(prime)(x)=f(x) for all x. Also, f(3)=5 and f^(prime)(3)=4 . Then the value of [f(10)]^2-[phi(10)]^2 is _____

If phi(x) is a differentiable function AAx in Rand a inR^(+) such that phi(0)=phi(2a),phi(a)=phi(3a)and phi(0)nephi(a), then show that there is at least one root of equation phi'(x+a)=phi'(x)"in"(0,2a).

Let phi_1(x)=x+a_2, phi_2(x)=x^2+b_1x+b_2, x_1=2,x_2=3 and x_3=5 and Delta=|(1,1,1),( phi_1(x_1), phi_1(x_2), phi_1(x_3)),(phi_2(x_1),phi_2(x_2),phi_2(x_3))| . Find the value of Delta .

If f '(x) phi (x) (x-2) ^(2). Were phi(2) ne 0 and phi (x) is continuous at x =2 then in the neighbouhood of x =2

Let (dy)/(dx) = (y phi'(x)-y^(2))/(phi(x)) , where phi(x) is a function satisfies phi(1) = 1, phi(4) = 1296 . If y(1) = 1 then y(4) is equal to__________

Prove: (sin phi - cos phi) ^(2) =1 - sin 2 phi.

If sin (7 phi+9^(@))=cos2phi , find a value of phi .