Home
Class 12
MATHS
Range of the function f(x)=sqrt(cos^(- 1...

Range of the function `f(x)=sqrt(cos^(- 1)(sqrt(log_4x))-pi/2)+sin^(- 1)((1+x^2)/(4x))` is equal to
(A) `(0,pi/2+sqrt(pi/2)]`
(B) `[pi/2,pi/2+sqrt(pi/2)]`
(C) `[pi/6,pi/4)`
(D) `{pi/6}`

A

`(0,(pi)/(2)+sqrt((pi)/(2))]`

B

`[(pi)/(2),(pi)/(2)+sqrt((pi)/(2))]`

C

`[(pi)/(6),(pi)/(2)]`

D

`{(pi)/(6)}`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \sqrt{\cos^{-1}(\sqrt{\log_4 x}) - \frac{\pi}{2}} + \sin^{-1}\left(\frac{1+x^2}{4x}\right) \), we will follow these steps: ### Step 1: Determine the Domain of the Function The function \( f(x) \) consists of two parts: \( \sqrt{\cos^{-1}(\sqrt{\log_4 x}) - \frac{\pi}{2}} \) and \( \sin^{-1}\left(\frac{1+x^2}{4x}\right) \). 1. **For \( \sqrt{\log_4 x} \)**: - The expression \( \log_4 x \) is defined for \( x > 0 \). - We need \( \log_4 x \geq 0 \) for \( \sqrt{\log_4 x} \) to be real, which implies \( x \geq 1 \) (since \( 4^0 = 1 \)). 2. **For \( \cos^{-1}(\sqrt{\log_4 x}) \)**: - The range of \( \cos^{-1} \) is defined for inputs in the interval \([-1, 1]\). - Therefore, we require \( \sqrt{\log_4 x} \) to be in \([0, 1]\), which leads to: \[ 0 \leq \log_4 x \leq 1 \implies 1 \leq x \leq 4 \] 3. **For \( \sin^{-1}\left(\frac{1+x^2}{4x}\right) \)**: - The expression \( \frac{1+x^2}{4x} \) must be in the interval \([-1, 1]\). - Since \( x > 0 \), we can analyze \( \frac{1+x^2}{4x} \): \[ \frac{1+x^2}{4x} \geq 0 \text{ for } x > 0 \] - We also need \( \frac{1+x^2}{4x} \leq 1 \): \[ 1+x^2 \leq 4x \implies x^2 - 4x + 1 \leq 0 \] - Solving the quadratic inequality \( x^2 - 4x + 1 = 0 \) gives: \[ x = \frac{4 \pm \sqrt{16 - 4}}{2} = 2 \pm \sqrt{3} \] - The roots are \( 2 - \sqrt{3} \) and \( 2 + \sqrt{3} \). The inequality holds between the roots, thus: \[ 2 - \sqrt{3} \leq x \leq 2 + \sqrt{3} \] ### Step 2: Determine the Intersection of Domains From the analysis, we have: - \( 1 \leq x \leq 4 \) from the first part. - \( 2 - \sqrt{3} \leq x \leq 2 + \sqrt{3} \) from the second part. Calculating \( 2 - \sqrt{3} \) and \( 2 + \sqrt{3} \): - \( 2 - \sqrt{3} \approx 0.268 \) - \( 2 + \sqrt{3} \approx 3.732 \) Thus, the intersection of the two intervals is: \[ [1, 2 + \sqrt{3}] \] ### Step 3: Evaluate the Function at the Endpoints 1. **At \( x = 1 \)**: \[ f(1) = \sqrt{\cos^{-1}(0) - \frac{\pi}{2}} + \sin^{-1}\left(\frac{1+1^2}{4 \cdot 1}\right) = \sqrt{0} + \sin^{-1}\left(\frac{1}{2}\right) = 0 + \frac{\pi}{6} = \frac{\pi}{6} \] 2. **At \( x = 2 + \sqrt{3} \)**: - Calculate \( f(2 + \sqrt{3}) \): \[ f(2 + \sqrt{3}) = \sqrt{\cos^{-1}(1) - \frac{\pi}{2}} + \sin^{-1}(1) = \sqrt{0} + \frac{\pi}{2} = \frac{\pi}{2} \] ### Step 4: Determine the Range of the Function Since \( f(x) \) is continuous on the interval \( [1, 2+\sqrt{3}] \) and takes values from \( \frac{\pi}{6} \) to \( \frac{\pi}{2} \), the range of \( f(x) \) is: \[ \left[\frac{\pi}{6}, \frac{\pi}{2}\right] \] ### Final Answer The range of the function \( f(x) \) is \( \left[\frac{\pi}{6}, \frac{\pi}{2}\right] \).

To find the range of the function \( f(x) = \sqrt{\cos^{-1}(\sqrt{\log_4 x}) - \frac{\pi}{2}} + \sin^{-1}\left(\frac{1+x^2}{4x}\right) \), we will follow these steps: ### Step 1: Determine the Domain of the Function The function \( f(x) \) consists of two parts: \( \sqrt{\cos^{-1}(\sqrt{\log_4 x}) - \frac{\pi}{2}} \) and \( \sin^{-1}\left(\frac{1+x^2}{4x}\right) \). 1. **For \( \sqrt{\log_4 x} \)**: - The expression \( \log_4 x \) is defined for \( x > 0 \). - We need \( \log_4 x \geq 0 \) for \( \sqrt{\log_4 x} \) to be real, which implies \( x \geq 1 \) (since \( 4^0 = 1 \)). ...
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|9 Videos
  • FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|7 Videos
  • EQUATION OF PLANE AND ITS APPLICATIONS -II

    CENGAGE ENGLISH|Exercise DPP 3.4|14 Videos
  • GETTING STARTED WITH GRAPHS

    CENGAGE ENGLISH|Exercise Exercises 1.18|1 Videos

Similar Questions

Explore conceptually related problems

The value of cos^(-1)sqrt(2/3)-cos^(-1)((sqrt(6)+1)/(2sqrt(3))) is equal to (A) pi/3 (B) pi/4 (C) pi/2 (D) pi/6

f(x)=sqrt(-x^(2)+4x-3)+sqrt(sin""pi/2(sin""pi/2(x-1)))

Range of tan^(-1)((2x)/(1+x^2)) is (a) [-pi/4,pi/4] (b) (-pi/2,pi/2) (c) (-pi/2,pi/4) (d) [pi/4,pi/2]

The range of f(x)=sin^(-1)((x^2+1)/(x^2+2)) is (a) [0,pi/2] (b) (0,pi/6) (c) [pi/6,pi/2] (d) none of these

The range of f(x)=sin^(-1)(sqrt(x^2+x+1)) i s (a) (0,pi/2) (b) (0,pi/3) (c) [pi/3,pi/2] (d) [pi/6,pi/3]

The range of f(x)=sin^(-1)((x^2+1)/(x^2+2)) is (a)[0,pi/2] (b) (0,pi/6) (c) [pi/6,pi/2] (d) none of these

If f(x)=cos^(-1)((2x^2+1)/(x^2+1)), then rang of f(x) is [0,pi] (2) (0,pi/4] (0,pi/3] (4) [0,pi/2)

sin^(-1)sqrt((2-sqrt(3))/4)+cos^(-1)(sqrt(12)/4)+sec^(-1)(sqrt(2))= (a) 0 (b) pi/4 (c) pi/6 (d) pi/2

int_(0)^(pi//2)(dx)/(1+e^(sqrt(2)cos(x+(pi)/(4)))) is equal to

int_1^(sqrt(3))1/(1+x^2)dx is equal to a. pi/(12) b. pi/4 c. pi/6 d. pi/3