Home
Class 12
MATHS
The range of the function f(x)=tan^(- 1)...

The range of the function `f(x)=tan^(- 1)((x^2+1)/(x^2+sqrt(3)))` `x in R` is

A

`[(pi)/(6),(pi)/(2))`

B

`[(pi)/(6),(pi)/(3))`

C

`[(pi)/(6),(pi)/(4))`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \tan^{-1} \left( \frac{x^2 + 1}{x^2 + \sqrt{3}} \right) \), we will follow these steps: ### Step 1: Define the function Let \( y = \frac{x^2 + 1}{x^2 + \sqrt{3}} \). ### Step 2: Cross-multiply to eliminate the fraction Cross-multiplying gives us: \[ y (x^2 + \sqrt{3}) = x^2 + 1 \] This simplifies to: \[ yx^2 + \sqrt{3}y = x^2 + 1 \] ### Step 3: Rearrange the equation Rearranging the terms, we get: \[ yx^2 - x^2 = 1 - \sqrt{3}y \] Factoring out \( x^2 \): \[ x^2 (y - 1) = 1 - \sqrt{3}y \] Thus, we can express \( x^2 \) as: \[ x^2 = \frac{1 - \sqrt{3}y}{y - 1} \] ### Step 4: Determine the conditions for \( x^2 \geq 0 \) Since \( x^2 \) must be non-negative, we require: \[ \frac{1 - \sqrt{3}y}{y - 1} \geq 0 \] This inequality holds when both the numerator and denominator are either both positive or both negative. ### Step 5: Analyze the numerator and denominator 1. **Numerator**: \( 1 - \sqrt{3}y \geq 0 \) implies \( y \leq \frac{1}{\sqrt{3}} \). 2. **Denominator**: \( y - 1 > 0 \) implies \( y > 1 \). Combining these inequalities, we find: - From the numerator, \( y \leq \frac{1}{\sqrt{3}} \). - From the denominator, \( y > 1 \). These two conditions cannot be satisfied simultaneously, so we need to analyze the critical points. ### Step 6: Find critical points To find where the expression changes sign, we can set the numerator and denominator to zero: 1. \( 1 - \sqrt{3}y = 0 \) gives \( y = \frac{1}{\sqrt{3}} \). 2. \( y - 1 = 0 \) gives \( y = 1 \). ### Step 7: Test intervals We test the intervals determined by these critical points: - For \( y < \frac{1}{\sqrt{3}} \): both numerator and denominator are positive. - For \( \frac{1}{\sqrt{3}} < y < 1 \): numerator is negative, denominator is positive. - For \( y > 1 \): numerator is negative, denominator is negative. From this analysis, we conclude that \( y \) must be in the interval \( \left( \frac{1}{\sqrt{3}}, 1 \right) \). ### Step 8: Find the range of \( f(x) \) Now, we need to find the range of \( f(x) = \tan^{-1}(y) \) where \( y \) is in the interval \( \left( \frac{1}{\sqrt{3}}, 1 \right) \). Calculating the values: - \( \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6} \) - \( \tan^{-1}(1) = \frac{\pi}{4} \) Thus, the range of \( f(x) \) is: \[ \left( \frac{\pi}{6}, \frac{\pi}{4} \right) \] ### Final Answer The range of the function \( f(x) = \tan^{-1} \left( \frac{x^2 + 1}{x^2 + \sqrt{3}} \right) \) is \( \left( \frac{\pi}{6}, \frac{\pi}{4} \right) \). ---

To find the range of the function \( f(x) = \tan^{-1} \left( \frac{x^2 + 1}{x^2 + \sqrt{3}} \right) \), we will follow these steps: ### Step 1: Define the function Let \( y = \frac{x^2 + 1}{x^2 + \sqrt{3}} \). ### Step 2: Cross-multiply to eliminate the fraction Cross-multiplying gives us: \[ ...
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|9 Videos
  • FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|7 Videos
  • EQUATION OF PLANE AND ITS APPLICATIONS -II

    CENGAGE ENGLISH|Exercise DPP 3.4|14 Videos
  • GETTING STARTED WITH GRAPHS

    CENGAGE ENGLISH|Exercise Exercises 1.18|1 Videos

Similar Questions

Explore conceptually related problems

The range of the function : f(x)=tan^(- 1)x+1/2sin^(- 1)x

The range of the function f(x)=x^2+1/(x^2+1) is

The range of the function f(x)=x^2+1/(x^2+1) is

The range of the function f(x)=(x+1)/(x-2) is

The range of the function f(x)=sqrt(1-x^2)/(1+|x|) is

Range of the function f(x)=(1+x^2)/(x^2) is equal to

The range of the function f(x) = (1)/(2-sin 3x) is

The range of the function f(x)=(x^(2)-2)/(x^(2)-3) is

The range of the function f(x) = sqrt(2-x)+sqrt( 1+x)

The range of the function f(x) = tan sqrt((pi^(2))/(9)-x^(2)) , is