Home
Class 12
MATHS
The domain of the function f(x)=sqrt(10-...

The domain of the function `f(x)=sqrt(10-sqrt(x^4-21 x^2))` is
a) `[5,oo)`
b. `[-sqrt(21),sqrt(21)]`
c. `[-5,-sqrt(21)]uu[sqrt(21),5]uu{0]`
d. `(-oo,-5)`

A

`[5,oo]`

B

`[-sqrt(21),sqrt(21)]`

C

`[-5-sqrt(21]]uu[sqrt(21),5)]uu{0}`

D

`(-oo,-5)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \sqrt{10 - \sqrt{x^4 - 21x^2}} \), we need to ensure that the expression inside the square roots is non-negative. This leads us to two conditions: 1. The expression under the outer square root must be non-negative: \[ 10 - \sqrt{x^4 - 21x^2} \geq 0 \] This implies: \[ \sqrt{x^4 - 21x^2} \leq 10 \] 2. The expression under the inner square root must also be non-negative: \[ x^4 - 21x^2 \geq 0 \] ### Step 1: Solve the inner condition Starting with the inner condition: \[ x^4 - 21x^2 \geq 0 \] We can factor this expression: \[ x^2(x^2 - 21) \geq 0 \] This gives us two factors: - \( x^2 \geq 0 \) (which is always true since squares are non-negative) - \( x^2 - 21 \geq 0 \) which simplifies to: \[ x^2 \geq 21 \] Thus, we have: \[ x \leq -\sqrt{21} \quad \text{or} \quad x \geq \sqrt{21} \] ### Step 2: Solve the outer condition Now, we consider the outer condition: \[ \sqrt{x^4 - 21x^2} \leq 10 \] Squaring both sides gives: \[ x^4 - 21x^2 \leq 100 \] Rearranging this, we have: \[ x^4 - 21x^2 - 100 \leq 0 \] Let \( y = x^2 \). Then the inequality becomes: \[ y^2 - 21y - 100 \leq 0 \] We can solve this quadratic inequality using the quadratic formula: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{21 \pm \sqrt{(-21)^2 - 4 \cdot 1 \cdot (-100)}}{2 \cdot 1} \] Calculating the discriminant: \[ 441 + 400 = 841 \quad \Rightarrow \quad \sqrt{841} = 29 \] Thus, the roots are: \[ y = \frac{21 \pm 29}{2} \] Calculating the two roots: 1. \( y_1 = \frac{50}{2} = 25 \) 2. \( y_2 = \frac{-8}{2} = -4 \) (not relevant since \( y \) must be non-negative) So, we have: \[ y^2 - 21y - 100 \leq 0 \quad \Rightarrow \quad 0 \leq y \leq 25 \] Substituting back \( y = x^2 \): \[ 0 \leq x^2 \leq 25 \quad \Rightarrow \quad -5 \leq x \leq 5 \] ### Step 3: Combine the conditions Now we combine the results from the inner and outer conditions: 1. From the inner condition: \( x \leq -\sqrt{21} \) or \( x \geq \sqrt{21} \) 2. From the outer condition: \( -5 \leq x \leq 5 \) The valid intervals are: - From \( -5 \) to \( -\sqrt{21} \) - From \( \sqrt{21} \) to \( 5 \) Thus, the domain of the function \( f(x) \) is: \[ [-5, -\sqrt{21}] \cup [\sqrt{21}, 5] \] ### Final Answer The correct option is: c) \( [-5, -\sqrt{21}] \cup [\sqrt{21}, 5] \)

To find the domain of the function \( f(x) = \sqrt{10 - \sqrt{x^4 - 21x^2}} \), we need to ensure that the expression inside the square roots is non-negative. This leads us to two conditions: 1. The expression under the outer square root must be non-negative: \[ 10 - \sqrt{x^4 - 21x^2} \geq 0 \] This implies: \[ ...
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|9 Videos
  • FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|7 Videos
  • EQUATION OF PLANE AND ITS APPLICATIONS -II

    CENGAGE ENGLISH|Exercise DPP 3.4|14 Videos
  • GETTING STARTED WITH GRAPHS

    CENGAGE ENGLISH|Exercise Exercises 1.18|1 Videos

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=sqrt(x-sqrt(1-x^2)) is

The domain of the function f(x)=sqrt(x^(2)-5x+6)+sqrt(2x+8-x^(2)) , is

The domain of definition of the function f(x)=sqrt(x-1)+sqrt(3-x) is a. [1,oo) b. (-oo,3) c. (1,3) d. [1,3]

Find the domain and range of the function f(x)=sqrt(x-5) .

The domain of the function f(x)=sqrt(((x+1)(x-3))/(x-2)) is [-1,2)uu[3,oo) b. (-1,2)uu[3,oo) c. [-1,2]uu[3,oo) d. none of these

Find the domain and range of the function f(x)=(1)/sqrt(x-5)

The domain of the function f(x)=1/(sqrt(4x-|x^2-10 x+9|)) is (a) (7-sqrt(40),7+sqrt(40)) (b) (0,7+sqrt(40)) (c) (7-sqrt(40),oo) (d) none of these

The domain of definition of f(x)=x-3-2sqrt(x-4)-x-3+2sqrt(x-4) is a. [4,oo) b. (-oo,4] c. (4,oo) d. (-oo,4)

The domain of the function f(x)=1/(sqrt(|x|-x)) is: (1) (-oo,oo) (2) (0,oo (3) (-oo,""0) (4) (-oo,oo)"-"{0}

The domain of the function f(x)=1/(sqrt(|x|-x)) is: (A) (-oo,oo) (B) (0,oo (C) (-oo,""0) (D) (-oo,oo)"-"{0}