Home
Class 12
MATHS
The domain of the function f(x)=loge {sg...

The domain of the function `f(x)=log_e {sgn(9-x^2)}+sqrt([x]^3-4[x])`(where [] represents the greatest integer function is

A

`[-2,1)uu[2.3)`

B

`[-4,1)uu[2,3)`

C

`94,1)uu[2,3)`

D

`[2,1)uu[2,3)`

Text Solution

Verified by Experts

The correct Answer is:
A

We have `f(x)=log_(e){sgn(9-x^(2))}+sqrt([x]^(3)-4[x])`
We must have, `sgn(9-x^(2))gt0`
`rArr" "9-x^(2)gt0`
`rArr" "x^(2)-9lt0`
`rArr" "(x-3)(x+3)lt0`
`rArr" "-3ltxlt3`
`"Also "[x]^(3)-4[x]ge0`
`rArr" "[x]([x]^(2)-4)ge0`
`rArr" "[x]([x]-2)([x]+2)le0`
`rArr" "[x]ge2 or [x]` lies between -2 and 0,
i.e., `[x]=-2,-1or0`
Now `[x]ge2 rArrxge2`
`[x]=-2rArr-2lexlt1`
`[x]=-1 rArr-1lexlt0`
`[x]=0 rArr0lexlt1`.
Hence `[x]=-2,-1,0rArr -2 lexlt1`.
Hence `D_(f)=[-2,1)cup[2,3)`.
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|9 Videos
  • FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|7 Videos
  • EQUATION OF PLANE AND ITS APPLICATIONS -II

    CENGAGE ENGLISH|Exercise DPP 3.4|14 Videos
  • GETTING STARTED WITH GRAPHS

    CENGAGE ENGLISH|Exercise Exercises 1.18|1 Videos

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=(1)/(sqrt([x]^(2)-[x]-20)) is (where, [.] represents the greatest integer function)

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

Find the domain of the function f(x)=(1)/([x]^(2)-7[x]-8) , where [.] represents the greatest integer function.

The domain of the function f(x)=4-sqrt(x^(2)-9) is

The domain of the function f(x)=(log_(4)(5-[x-1]-[x]^(2)))/(x^(2)+x-2) is (where [x] denotes greatest integer function)

The domain of the function f(x)=log_(3)log_(1//3)(x^(2)+10x+25)+(1)/([x]+5) (where [.] denotes the greatest integer function) is

Let f(x) = [sin ^(4)x] then ( where [.] represents the greatest integer function ).

Find the domain of f(x)=sqrt(([x]-1))+sqrt((4-[x])) (where [ ] represents the greatest integer function).

If f(x)=|x-1|.([x]=[-x]), then (where [.] represents greatest integer function)

The domain of the function f(x)=log_(10)(sqrt(x-4)+sqrt(6-x)) is